Refine Your Search

Topic

Author

Search Results

Journal Article

Study of Stress Measurements Technique for Internal Electrical Connection of Printed Circuit Boards using Synchrotron Radiation

2008-04-14
2008-01-0697
Measurements of residual stress in a printed circuit board, which consists of copper foil, silver alloy and thermo plastic resin, were conducted under a thermal cycle. The printed circuit board was given a ten-layer repeat of prepreg and made by thermocompression bonding. Experiments suggested the possibility of measuring surface residual stress of copper circuits and the internal residual stress of metallic connections by synchrotron radiation of Spring-8. FEM analysis of the printed circuit board during a thermal cycle was conducted, and the result was adjusted to X-ray stress using absorption correction. X-ray stress during a heat-cycle obtained by synchrotron radiation showed good agreement with stress calculated by FEM analysis.
Technical Paper

Development of Sintered Bearing Material with Higher Corrosion Resistance for Fuel Pumps

2007-04-16
2007-01-0415
In recent years, due to a growing demand for improvement in the performance and reliability of automotive fuel pumps and the advancement of globalization, automotive fuel pumps are being used with inferior gasolines that include more sulfur, organic acids or compounds, compared to gasolines used in general regions. Conventionally, bearings in these fuel pumps have mainly been made of sintered bronze alloy. With this bronze alloy, however, it is difficult to achieve a significant improvement in the tribology characteristics of bearings, in order to meet the demands for performance improvement, etc., and corrosion is severe in inferior gasolines that contain highly-concentrated organic acids or sulfur and the corrosion products that accompany them. Therefore, in order to obtain fine tribology characteristics and superior corrosion resistance in gasolines with highly-concentrated organic acids and sulfur, various copper-based alloys were studied using the powder metallurgy process.
Technical Paper

Ignition Simulation and Visualization for Spark Plug Electrode Design

2007-04-16
2007-01-0940
An ignition simulation and an ignition visualization method that analyze effects of spark plug electrode design have been developed. In the ignition simulation, a programmed heat source corresponds to the discharge energy in the spark gap, and the flame-kernel generation and flame propagation are calculated on the heat balance in the gap, in consideration of thermal transmission to the electrodes. The results by this simulation indicate that high ignitability of fine ground electrode spark plugs is because the miniaturization of the ground electrode reduces the heat loss, and flame growth is thus less disturbed by the loss. The ignition visualization includes taking Schlieren images by laser light to capture flame kernels with weaker luminescence intensity compared to ignition discharge spark luminescence. This visualization enables the observation of the influence of the shape of spark plug electrodes on flame growth.
Technical Paper

Modeling of Expert Driver’s Braking Behavior and Its Application to an Automatic Braking System

2009-04-20
2009-01-0785
Deceleration patterns of an expert driver will be formulated using the perceptual risk index for approach and proximity of a preceding vehicle as an example of comfortable braking pattern. It will be shown that the formulated braking pattern can generate smooth deceleration profile uniformly for many conditions of approaching conditions. In addition, brake initiation timing of expert driver will be successfully formulated using the alternative index. Finally, an automatic braking system will be proposed based on the formulated brake initiation model and the velocity profile. Twenty five expert drivers experienced the automatic braking installed in an experimental car. It will be shown that the proposed system can generate smooth profile and realize secure brake patterns based on subjective evaluation.
Technical Paper

Quality Management Approach for Powertrain Control Unit

2002-10-21
2002-21-0015
In recent years, the powertrain system is becoming bigger and more sophisticated than ever, and it is very important that new powertrain systems shall be timely developed just when the market required. In this kind of new system, the quality in particular will be an important factor on the vehicle evaluation issue. With this objective in mind, DENSO has been working on the following challenges, such as the development of key technology, the improvement of quality assurance system, and engineer education to realize them. This reports a general idea on these quality management activities.
Technical Paper

Glow Plug with Combustion Pressure Sensor

2003-03-03
2003-01-0707
Combustion-pressure-data-based feedback control of fuel injection and EGR is the most promising diesel system, since it can reduce fuel consumption and emissions, as well as noise and vibration, and improve the evaluation efficiency for adapting engine performance to. We developed a combustion pressure sensor installed inside the glow plug. This is superior in maintainability and ease of installation, and can detect the combustion pressure in each cylinder at high accuracy and low cost, with no need for engine modification.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

Development of the Large Type Electric-Driven Refrigerator for the HV Truck

2017-03-28
2017-01-0137
In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
Technical Paper

High-Precision Modeling of Heat Exchanger Core on Vehicle Engine Room Airflow Analysis

2017-03-28
2017-01-0129
In general, CFD analysis with porous media is precise enough to simulate airflow behavior in a heat exchanger core, placed in the vehicle. In a case when the airflow behavior is complex, however, the precision lowers according to our study. Therefore, we developed a new modeling method to keep high-precision and applied it to analysis of airflow in the vehicle. The concept is at first that the shape of tubes and the distance between the tubes are as the actual product so that the airflow with an oblique angle is to pass through a core. With this concept, airflow with an oblique angle hits the surface of tubes and passes through a core with changing the direction. Next, the concept is to reproduce the air pressure loss in actually-shaped fins, and therefore, we use a porous medium for the modeling of the fins instead of the product shape modeling to combine with the the tubes.
Technical Paper

Numerical Modeling of International Variations in Diesel Spray Combustion with Evaporation Surrogate and Virtual Species Conversion

2017-03-28
2017-01-0582
A methodology for simulating effect of international variations in fuel compositions on spray combustion is proposed. The methodology is validated with spray combustion experiments with real fuels from three different countries. The compositions of those fuels were analyzed through GC×GC and H-NMR. It was found that ignition delay times, flame region and flame luminosity were significantly affected by the compositional variations. For the simulation, an evaporation surrogate consisting of twenty two species, covering basic molecular types and a wide range of carbon numbers, is developed. Each species in the evaporation surrogate is then virtually converted to a reaction surrogate consisting of n-hexadecane, methylcyclohexane and 1,2,4-trimethyl benzene so that combustion reactions can be calculated with a published kinetic model. The virtual species conversion (VSC) is made so as to take over combustion-related properties of each species of evaporation surrogates.
Technical Paper

4th Generation Diesel Piezo Injector (Realizing Enhanced High Response Injector)

2016-04-05
2016-01-0846
Diesel common rail injectors are required to utilize a higher injection pressure and to achieve higher injection accuracy in order to meet increasingly severe emissions, less fuel consumption, and higher engine performance demand. In addition to those requirements, in conjunction with optimized nozzle geometry, a more rectangular injection rate and stable multiple injections with shorter intervals are required for further emissions and engine performance improvement by optimizing the combustion efficiency.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

Impact of Substrate Geometry on Automotive TWC Gasoline (Three Way Catalyst) Performance

2017-03-28
2017-01-0923
Tightening global emissions standards are driving automotive Original Equipment Manufacturer’s (OEM’s) to utilize Three Way Catalyst (TWC) aftertreatment systems that can perform with greater efficiency and greater measured control of Precious Group Metals (PGM) use. At the same time, TWC aftertreatment systems minimize exhaust system pressure drops. This study will determine the influence of catalyst substrate cell geometry on emission and PGM usage. Additionally, a study of lightoff and backpressure comparisons will be conducted. The two substrate configurations used are hex/750cpsi and square/750cpsi.
Technical Paper

Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst

2017-03-28
2017-01-0913
In order to comply with emission regulation, reach their profitability targets and minimise the in-use cost of their vehicles, OEMs are seeking solutions to optimise their aftertreatment systems. For Selective Catalytic Reduction (SCR) system engineers, one of the most important challenges is to reduce the system's cost, while keeping its high level of NOx emission reduction performance. Ways to achieve this cost reduction include 1. using an engine out NOx estimation model instead of a NOx sensor upstream of the SDPF (DPF coated with SCR) catalyst and 2. eliminating the Ammonia Slip Catalyst (ASC) downstream of the SDPF catalyst. Achieving these challenging targets requires actions on the complete SCR system, from the optimisation of mixing and uniformity in the SDPF catalyst to the development of robust controls. To face these challenges, a novel exhaust reverse flow concept with a blade mixer was developed.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Development of New Generation Battery Management ECU

2017-03-28
2017-01-1203
Recent electric vehicles use Li-ion batteries to power the main electric motor. To maintain the safety of the main electric motor battery using Li-ion cells, it is necessary to monitor the voltage of each cell. DENSO has developed a battery Electronic Control Unit (ECU) that contributes greatly to the reduction of the cost and the improvement of the reliability of the system. Each manufacturer has been developing a dedicated IC for monitoring the voltages of each cell of a battery. However, since the number of cells that can be monitored is limited, more than one IC is required to measure the voltages of a large number of cells. The increase in the number of ICs and the amount of insulator leads to the rise in system cost. DENSO has developed a dedicated IC that uses a proprietary high-breakdown voltage process, and which enables monitoring up to 24 cells with a single IC chip.
Technical Paper

Water Cooled Charge Air Cooler Development

2016-04-05
2016-01-0651
Due to the recent trend emphasizing on environmental friendly, engine supercharger downsizing technology has been under development globally. In this report, the technical knowledge for high performance and high quality water-cooled CAC development is provided. For higher cooling performance, the optimum fin and tube core matrix water-cooled CAC, delivering best performance and quality have been developed. For higher reliability against thermal stress, the detail specifications of water-cooled CAC based on the transient analysis and the simulation technology have been established.
Technical Paper

Realizing Robust Combustion with High Response Diesel Injector with Controlled Diffusive Spray Nozzle and Closed Loop Injection Control

2017-03-28
2017-01-0845
The Diesel engine performance was drastically improved since the introduction of the Common Rail system in 1996. Over the years, the Common Rail technology was continuously improved to reduce the fuel consumption, engine-out emissions and enhance the drivability. However further technical improvement steps for a precise control of combustion are required to satisfy the increasing stringent worldwide emissions limits and to contribute to attractively performing Diesel powered vehicles. Common Rail injectors significantly contribute to improve the combustion. This improvement can be achieved by precisely controlling the injected fuel quantity and increasing the injection pressure. In addition to those features, a more rectangular injection rate, the capability of stable multiple injections at shorter intervals and the control of the spray shape, are required to achieve an optimized fuel mixture.
Technical Paper

New Spray Concept Development for Dual Injection System

2017-03-28
2017-01-0835
Gasoline direct injection (GDI) systems are a main development focus for global environment issues and energy security. At the same time, it is also important to challenge further development of Multi point injection (MPI) systems for a simple and robust combustion system responding to global fuels ,required for the growing automotive markets in emerging countries, especially in the A, B vehicle segments. This paper focuses on reducing wall wetting in cold conditions and maximizing mixture cooling by fuel vaporization (preventing knocking) in high load conditions as key development points of MPI systems. We propose a dual MPI system enhancing direct flow of spray into the combustion chamber to gain part of the benefit of GDI in addition to the homogeneity advantage of an MPI system. This dual MPI system requires finer atomization with at the same time robustness against intake airflow.
Technical Paper

Pressure Sensor Module for High Temperature,High Pressure, and Quick Response

2018-04-03
2018-01-0759
According to the advance of engine control development, demands for direct sensing of physical quantity have been growing. Regarding pressure sensing, key properties for direct sensing are robustness against high temperature and pressure, and response time in addition to accuracy. In this work, a pressure sensor module with these key properties was developed. First of all, a piezoelectric device was selected as a suitable sensing principle for the required properties because of its thermally stable piezoelectric effect and potential for simple installation structure. Regarding robustness against temperature, the sensor module was designed to form thermal isolation layer with outer housing which is optimized according to its application. Regarding robustness against pressure and response time, breakage of the piezoelectric element is the main technical issue.
X