Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Theoretical Analysis of Engine Bearing Considering Both Elastic Deformation and Oil Film Temperature Distribution

2001-03-05
2001-01-1076
Recently, the bearing performances have been analyzed by elastohydrodynamic lubrication theory (EHL). However, the oil film temperature is constant within a bearing clearance on this theory. As modern automotive engines are running at high rotational speed, the change of the oil film temperature is remarkable within a bearing clearance. The bearing performances are influenced by the distribution of the oil film temperature. Therefore it is also necessary for the analysis of the bearing performances to consider the effect of the oil film temperature distribution by thermo elastohydrodynamic lubrication theory (TEHL). In this study, the effects of the bearing performances are investigated on connecting rod bearing in general gasoline engine by TEHL. Furthermore, oil film thickness, oil film pressure and oil film temperature of TEHL results are compared with those of EHL.
Technical Paper

Parametric Study for Design Factors on Engine Bearings by using TEHL Analysis

2002-03-04
2002-01-0298
As the downsizing and lightening of the engine are designed, the compact and lightweight of the housing should be required. Therefore, both the engine bearing and the housing are greatly deformed under the severe condition, and a heat generation due to the friction loss increases in the bearings. In this study, on the connecting rod bearing for the automotive engine, the bearing design factors as the oil inlet temperature, the rotational speed, the bearing clearance and the bearing length, are changed as a parameter. The influences of the design factors for the performance of the connecting rod bearing are investigated by using TEHL analysis (Thermo ElastoHydrodynamic Lubrication theory analysis).
Technical Paper

Development of New Aluminum-Zinc-Silicon Bearings for Heavy Load Applications in Uprated Engines

1990-02-01
900124
The recent trend toward the compact and light-weight construction of diesel engines with high power output has been imposing higher requirements of fatigue strength and antiseizure characteristics on bearings. In order to meet these requirements, the authors developed a new bearing alloy of higher fatigue strength for use in heavy load engines, through the analysis of the Al-Zn-Si alloy which has high corrosion resistance. Experimental results of this new alloy to study its physical properties and bearing performances indicate that it can be applied to bearings in diesel engines which operate in harsh conditions.
Technical Paper

Improvement of Aluminum-Lead Bearings by New Manufacturing Method

1990-02-01
900123
A sintered aluminum-lead alloy of the bimetal type was manufactured in Japan (1977), and has been widely used in main and crankpin bearings for automobile engines. However, the recent trend of automobile engines toward high power output, light-weight and compact construction increases the bearing load. As a result, the margin of fatigue strength of the conventional sintered aluminum-lead alloy has been diminishing. In this paper, a new method of manufacturing bearing material by the hot extrusion process is reported. The new method makes it possible to produce the optimum lead grain distribution and strong adhesion between powder particles. The new manufacturing method produces the aluminum-lead bearing material which has 30% or more increase in fatigue strength over the conventional sintered aluminum-lead bearing material.
Technical Paper

Development of Lead Free Copper Based Alloy for Piston Pin Bushing Under Higher Load Engines

2006-04-03
2006-01-1105
As the recent engines are designed for higher performance, piston pin bushing used for small end of connecting rod must endure higher dynamic load and oil temperature conditions. Therefore, the bushing is required higher wear resistance and anti-corrosion. And it is also expected to develop the bushing without lead due to environmental concerns. In this report, lead free copper based bushing alloy was studied. At first, in order to keep the anti-seizure property without lead, we studied the effects of hard particles added into copper based alloy. Second, we evaluated the effect of addition of hard particles on wear resistance and anti-corrosion.
Technical Paper

Studies on Lead-free Resin Overlay for Engine Bearings

2006-04-03
2006-01-1104
Resin-based overlays as lead-free bearing materials for automobile engines are experimentally studied using tribology testing apparatus and an engine bench test rig. A resin overlay newly proposed is composed of Polybenzimidazole (PBI) as the base resin and solid lubricant Molybdenum disulfide (MoS2) as an additive. PBI has high temperature performance and good adhesion and physical strength under higher temperatures. Consequently, a PBI-based overlay has good sliding properties in terms of wear resistance and fatigue resistance. The resin overlay shows applicability to automobile engine bearings which are used under high loads.
Technical Paper

Fretting Phenomenon on Outer Surface of Connecting Rod Bearings for Automotive Engines

1993-01-01
931022
Recent automotive engines for high performance vehicles have been designed for higher speeds and outputs. Not only the combustion load but also the inertia force applied on the connecting rod has been increasing. Automotive engines have also become compact and lighter in weight for needs of lower fuel consumption. For these reasons, the rigidity of the connecting rod has been reduced in comparison with the increasing inertia force. As a result, fretting damage may occur between two surfaces of the connecting rod big end bore and the bearing outer surface, causing breakage of the connecting rod itself. Countermeasures for fretting such as a tighter bearing fit ( interference ) and higher rigidity of the connecting rod big end are generally adopted. But the details for these countermeasures can not be easily predicted at the design stage. Rather they are obtained only by durability tests on the actual engines.
Technical Paper

Development of Multi-layer Aluminum-Tin-Silicon Alloy Bearing for Automotive Diesel Engine

2003-03-03
2003-01-0050
Recent engine bearings are operating under severe conditions to support such engine requirements as lower fuel consumption, longer life and protection of global environment. On Al-Sn-Si alloy bearings, it has some issue that fatigue may occur on the bearing alloy under severe condition such as in automotive diesel engines. Higher strength of alloy, which allows the fatigue resistance, can be obtained by solid solution treatment at higher temperature in general. But at the same time it makes intermetallic compounds with less bonding strength between intermediate layer and steel backing. A new bearing without lead has been developed by applying the heat treatment of bimetal and adequate intermediate layer for the process, consequently concluded to have the higher fatigue strength, with usual property on Al-Sn-Si alloy bearings.
Technical Paper

Improvement of Multi-Layer Aluminum-Silicon-Tin Bearings for High Power Engines Through a Reinforced Intermediate Layer

1994-03-01
940691
The recent trend toward the compact and light-weight construction of automotive engines with high power output has been imposing higher requirements of fatigue strength, anti-seizure property and conformability on bearings. In order to meet these requirements, the authors analyzed the property of each layer of multi-layer Al-Si-Sn bearings and investigated its influence on bearing performance. Improvement was achieved as to the bearing alloy and the intermediate bonding layer based on the results of the investigation. As a result, this newly improved bearing has been concluded to provide better fatigue strength than conventional bearings. It has thus become possible to apply it as a bearing for the recent engines used under harsh conditions.
Technical Paper

A Study of Three Layer Copper-Lead Bearings Without Nickel Barrier

1997-02-24
970214
The advent of high-performance, compact, and lightweight engines in recent years brings forth a tendency to increase the load for engine bearings and demands on producing even higher levels of durability and reliability in bearing products against fatigue, seizure, wear, and corrosion. Based on the perspective of extending the bearing life, the authors have studied the problems that are encountered with the current three layer copper-lead alloy bearings after their overlay has worn out. Then, we studied the issues of lowered seizure resistance that results from the exposure of the nickel barrier, and of deficient corrosion resistance that results from the exposure of the bearing alloy. In order to improve upon these areas, we focused on diffusion phenomenon of overlay elements without the nickel barrier and also studied the feasibility of creating engine bearings whose alloy composition has been partially modified.
Technical Paper

New Type Fatigue Phenomenon of Aluminum-Based Engine Bearings

1989-02-01
890556
Heavily-loaded engine bearings in recent years have frequently utilized aluminum-tin-silicon alloy which does not require overlay. It has been found that some special fatigue damage may occur in these aluminum alloys under certain heavy-load application. A microscopic examination of such fatigue revealed a structural change inside the aluminum alloy. In this paper such fatigue phenomenon was studied in detail and reproduction tests were carried out on the bearing test machines. As a result, we have developed a new high-strength aluminum alloy which can prevent such fatigue damage.
Technical Paper

Diffusion Behavior of Overlay for Three Layers Engine Bearings

1989-02-01
890555
The diffusion phenomena of tin and indium which are contained in the lead-base overlay of 3-layer copper-lead alloy bearings were studied. Easier diffusion of tin compared with indium decreases the corrosion resistance of the overlay, and the tin reacts with the underlayer to form brittle Ni-Sn or Cu-Sn intermetallic compound, resulting in weak bonding strength. Addition of copper into Pb-In overlay markedly restrains the diffusion of indium and therefore stabilizes the characteristics of corrosion resistance, bonding strength and mechanical properties for a long period. Cavitation tests, seizure tests and bearing fatigue tests were conducted on Pb-In-Cu overlay to study the feasibility of its application to actual engine bearings.
Technical Paper

Development of Bearing with Multilayer Bi-Sb Overlay for Automotive Engines

2023-04-11
2023-01-0872
In recent years, the removal of lead (Pb), which is an environmentally hazardous material often used in bearings for automotive engines, has been continuously promoted. Bismuth (Bi) is attracting attention as a substitute for lead, and it is currently being used mainly for passenger cars and trucks as a lead replacement. However, lead has not been replaced for motorcycles where the bearings are exposed to high temperatures at high rotation speeds, and trucks and generators where high loading capacity, long lifetime and good corrosion resistance are required. It has been difficult to achieve both high load and corrosion resistant for a bearing overlay material. The purpose of this development is to improve the corrosion resistance and fatigue resistance of bismuth overlay by developing a bismuth- antimony alloy overlay in which antimony (Sb) is added to the bismuth matrix.
Technical Paper

Development in Polymer Based Bearing Material for Automotive Shock Absorbers

2000-03-06
2000-01-0097
Recently, as for the rod guide bush bearing materials for shock absorbers, lower friction and the improvement of durability are required along with ride quality and longer life of automobile. Usually, lead is contained in bearing materials. However, the addition of the lead in bearing material is being restricted from the earth environmental problem. Bearing materials for shock absorbers are composite material consists of steel backing and covered with polymer surface layer. This basic material structure hasn't been changed till now, though it has been improved by changing its components and compositions based on the customer's requirement. Bearing material with both lower friction and excellent wear resistance has been developed in this study.
Technical Paper

A Study on Engine Bearing Wear and Fatigue Using EHL Analysis and Experimental Analysis

1999-05-03
1999-01-1514
The possibility of predicting engine bearing durability by elastohydrodynamic lubrication (EHL) calculations was investigated with the aim of being able to improve durability efficiently without conducting numerous confirmation tests. This study focused on the connecting rod big-end bearing of an automotive engine. The mechanisms of wear and fatigue, which determine bearing durability, were estimated by comparing the results of EHL analysis and experimental data. This comparison showed the possibility of predicting the wear amount and the occurrence of fatigue by calculation.
Technical Paper

A Study for Wear and Fatigue of Engine Bearings on Rig Test by Using Elastohydrodynamic Lubrication Analysis

1999-03-01
1999-01-0287
Engine bearings today are operating under very harsh conditions. Consequently, a wear propagates for a short time and a fatigue sometimes occurs on the bearings. In present study, on the rig test machine, the operating conditions of engine bearing were simulated to reproduce the bearing damage. The bearing wear was measured until the fatigue crack occurred. The bearing wear increased at the edges of the bearing length and the crack also was observed near the edges. The experimental results were compared to the calculated results based on the elastohydrodynamic lubrication (EHL) theory. The correlations between the bearing damage and the bearing performances by the theoretical analysis were investigated.
Technical Paper

Development of Lead-Free Copper Alloy Bearing Material with Improved Conformability

2015-04-14
2015-01-0520
There has been a requirement for automotive bearings materials to be free of the toxic material lead, in accordance with ELV regulations and from the perspective of environmental problems. Currently, bismuth is used as a replacement for lead in copper alloy based main journal bearings and connecting rod bearings for automotive engines. In recent years, there has been changing to lead-free materials for truck engine bearings. Compared with automotive engines, lots of contaminations in the oil and local contact between the shaft and bearings can occur in truck engines. The ability to tolerate contamination and local contact is therefore required for truck engine bearings. In this development, we find that the addition of 8 mass% bismuth and 1.5 mass% molybdenum carbide particles into copper-tin alloy is effective for improving the ability which allow the contamination and local contacts. The development of above mentioned lead-free copper alloy bearing material is described here.
Technical Paper

Development of High Strength Aluminum-Zinc-Silicon Alloy Bearing with Polymer Overlay

2019-04-02
2019-01-0179
Recent automotive engine developments have made great progress in protecting the global environment and in meeting exhaust gas regulations and fuel economy regulations. As a result, engine bearings tend to be used under severe conditions such as higher specific load onto the bearings and with low viscosity of lubricating oil. Aluminum alloy bearings are widely adopted as main bearings and connecting rod bearings in gasoline and diesel engines for passenger cars, and generally Al-Sn-Si alloy bearings without an additional overlay are used. Although these Al-Sn-Si alloy bearings have good anti-seizure properties and excellent running-in-properties, their material strength under high temperature conditions is not sufficient because of the low melting point of Sn phase contained in the alloy, and they could potentially result in damage to the bearing as seizure and fatigue under these conditions. In such cases, Cu-Pb-Sn alloy bearings with lead-based overlay are usually applied.
X