Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Free Machining Titanium Alloy for Connecting Rods

1991-02-01
910425
Some fundamental research on alloy design of the new titanium alloy and process design such as forging and surface treatment were carried out in order to develop new titanium alloy connecting rods. Free machining Ti-3Al-2V alloy is the best alloy for connecting rods because it has mechanical properties equivalent to quenched and tempered medium carbon steels, a popular material for connecting rods. The alloy can be machined at higher speed than the most popular titanium alloy Ti-6Al-4V. Forging in the β phase temperature range is desirable to enable one heat forging of connecting rods and to eliminate crack initiation. New technology such as induction heating in forging, pickling after forging and coating on large ends were developed. As a result of this research, new titanium alloy connecting rods which can be applicable to mass production have been developed.
Technical Paper

Development of High Toughness Bainitic Microalloyed Forging Steel

1998-02-01
980883
The influence of chemical compositions and forging conditions on mechanical properties of forged bainitic steels were studied. Manganese and chromium are useful to produce bainite structure while carbon and vanadium are good to control the mechanical properties of the steels. One of the compositions is 0.25 % C - 2.1 % Mn - 0.7 % Cr - 0.15 % V of which tensile strength is 1000 MPa and impact value (2 mm U type notched specimen) is 50 J/cm2 for 100 mm diameter bars. Bainitic steels have lower fatigue limit in the case of smooth specimen than ferrite-pearlite microalloyed steels but have higher fatigue limit in the case of notched specimen.
Technical Paper

Development of Ultra Fine Grain Steel for Carburizing

1995-02-01
950209
The cold forging process is one of the most popular in the manufacture the automotive parts such as gears and shafts, cold forging saves material and machining costs by near-net shape the principle of forming. However, abnormal austenite grain growth sometimes occurs when the cold forged parts are heated for surface carburizing without a prior normalizing process. The size of the coarse grains can be large, sometimes ASTM Grain Size Number -2 to -4. The abnormal grain growth may cause post-carburizing distortion and is harmful to both fracture toughness and fatigue strength of the parts [1]. The purpose of our research was to develope new steels which would keep the fine grains during the carburizing treatment without normalizing. First, we studied the influence of elements on the grain growth property of case hardening steels and Naiobum (Nb) was selected as the element to control the grain growth. Secondly, we developed an ultra fine grain steel containing a small amount of Nb.
Technical Paper

Development of Case Hardening Steel for Cold Forging without Spheroidizing

1996-02-01
960315
Based on fundamental research about the influence of chemical composition on rolled bar hardness, hardenability, case hardenability, cold formability, and mechanical properties, a new case hardening steel has been developed which can be cold forged without spheroidizing annealing. The steel contains boron and the Si and Mn contents are less than conventional steels. The steel shows fatigue strength equivalent to the conventional steels and better toughness and machinability.
X