Refine Your Search

Topic

Search Results

Journal Article

Ventilation Characteristics of Modeled Compact Car Part 1 Airflow Velocity Measurement with PIV

2008-04-14
2008-01-0732
In the present study, a model experiment is performed in order to clarify the ventilation characteristics of car cabin. This study also provides high precision data for benchmark test. As a first step, the ventilation mode is tested, which is one of the representative air-distribution modes. Part 1 describes the properties of the flow field in the cabin obtained by the experiment. Part 2 describes the ventilation efficiencies such as the age of air by using trace gas method. The properties of flow field are measured using particle image velocimetry (PIV). The mean velocity profiles, the standard deviation distribution, and the turbulence intensity distribution are discussed. The brief comparison between experiments and predictions of computational fluid dynamics (CFD) is also presented. In the comparison between experiment and CFD, the results showed similar flow field.
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Control Method of Autonomous Vehicle Considering Compatibility of Riding Comfort and Vehicle Controllability

1990-08-01
901486
This paper describes a control strategy for autonomous vehicles in an intelligent vehicle/highway system. The control concept aims at the compatibility of passenger riding comfort and vehicle controllability. The main subject of this paper is lateral control of vehicles. In order to analyze riding comfort, we have experimented on the lateral riding comfort during a lane change. It was found that the riding comfort is mainly related to the jerk more than the acceleration, and that the trajectory pattern is important. According to the experimental results, a motion control system was designed. We found through the computer simulation and the experiment with an autonomous test vehicle that comfortable ride is realized along with system stability. Lastly, in order to apply this strategy to the longitudinal direction, we have experimented on the longitudinal acceleration with the test vehicle. The results shows that the same strategy is applicable to the longitudinal direction.
Technical Paper

Collapse of Thin-Walled Curved Beam with Closed-Hat Section - Part 2: Simulation by Plane Plastic Hinge Model

1990-02-01
900461
This paper describes a calculating method to predict the quasi-static collapsing behaviors of spot-welded closed-hat section curved beams under axial compression. The overall deformat ions and the local buckling modes of beams were calculated using a geometrical model. Force-displacement relations were predicted by a elastic-plastic structural analysis method using the ‘plastic hinge’ concept. Collapsing tests were made on beams which are differenting section size, rotation angle, and metal sheet thickness. Comparisons between the calculated and experimental results of deformed shapes of beams, the local buckling modes and the force displacement relations are discussed.
Technical Paper

High Performance Idle Speed Control Based on the Tuning Functions

2008-04-14
2008-01-1011
Idle speed reduction is one of the important solutions for fuel economy improvement. However, idle speed reduction requires improving the disturbance rejection performance of idle speed control to prevent malfunctions such as engine stall. In mass production engines, PID control is mainly used for the idle speed control because of easiness of the design. However the idle speed control system has nonlinear characteristics. Therefore we have developed the algorithm based on the sliding mode control(SMC) [1]. As a result, superior performance was obtained [2]. Furthermore, for performance, we developed the new algorithm based on Tuning Functions (TF) [3]. As a result, high disturbance rejection performance was obtained.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Analysis of Air Ventilation Performance based on Aerodynamics Simulation

2001-03-05
2001-01-0296
The shape and configuration of the air ventilation system determines the ventilation performance while influencing the design and structure of a car. It is therefore necessary to decide the configuration of the air ventilation system in the early stages of design. We tried to analyze the pressure level of the ventilation ducts from the aerodynamics simulation results added to the cowl top which had the ventilation intake duct, and so on. Thus we succeeded in designing a new development process that can be used to predict the ventilation performance in a shorter time without the use of prototypes.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

Booming noise analysis of passenger car using integrated approach of CAT/CAE

2000-06-12
2000-05-0293
The need of lightweight vehicle design is motivated by the recent global trend of less fuel consumption and lower emission in vehicle. However in NVH development of vehicle, it becomes more difficult for the lightweight vehicle to reach low vibro-acoustic sensitivity than, for the heavy weight one to do so. Inthis environment, this paper describes about the practical finite element (FE) modeling of vehicle structure and acoustics, in order to predict "boom" response to powertrain excitation. The FE modeling process through validation and updating with experimental mode makes, the accumulation of considerable expertise for improving prediction accuracy, possible. FE analysis based on this modeling process is so useful for predicting "boom" levels up to 200 Hz. Using the result of FE analysis, structural optimization is executed in order to improve "boom" level of 80 Hz.
Technical Paper

Computational design of commercial vehicle for reconciling aerodynamics and engine cooling performance

2000-06-12
2000-05-0344
As the global environmental protection becomes the world consensus recently, the regulations of the fuel consumption and the exhaust gas have large effects on the performance and the fundamental structure of commercial vehicles. Especially the technology concerning "fluid" and "heat" has a close relationship with those issues. Owing to above circumstances, commercial vehicles such as large trucks and buses are forced to be designed near the limit of allowance. Furthermore, a rapid design is another requirement. However, though significant number of variations, i.e., cab configuration, wheel base, rear body configuration, engine specification, etc., are prepared, it is impossible to improve the performance of all those combinations by experiments which cost a lot. Accordingly, the quantitative prediction using computer will become indispensable at the beginning term of new car development.
Technical Paper

A Head Clearance Measurement System Using Image Processing

1992-02-01
920481
We are developing some head clearance measurement system based on image processing and stereo method. Two shading images (a right and left) obtained by a stereo camera are transformed to binary images, and some corresponding features are searched between both images. An important matter of this image processing is an availability under every condition of environment and the process must be managed with suitable methods. In this paper, the structure and the algorithms of our system are described and some experimental results also introduced.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 5 - Scaled Model Experiment for Heat Transfer Characteristics

2012-04-16
2012-01-0634
Accuracy of numerical simulation has to be evaluated through the actual phenomenon such as experiment or measurement and then it can be employed to design the air-conditioning system of car cabin at the development phase. Scaled model of vehicle cabin was created by the Society of Automotive Engineers of Japan (JSAE) and the experiment was performed to obtain the detailed information of heat transfer characteristics inside the cabin under the non-isothermal condition. The sheet heaters were put to the inner surface of the acrylic cabin and they supplied certain amount of heat. The temperatures of inner and outer surface and air were measured to evaluate the thermal environment of the cabin. The results lead to enhancement of the data of the standard model of the cabin.
Technical Paper

Analysis of Mixture Formation Process in a Stoichiometric Direct Injection Gasoline Engine

2003-03-03
2003-01-0066
The stoichiometric direct injection gasoline engines have higher torque performance than the port injection engines, as the volumetric efficiency can be increased due to the cooling effects of charging air by the fuel evaporation in the cylinder. They need only 3-way catalyst, leading to the cost down. However there exists the injection timing (region) that increased volumetric efficiency does not lead to higher torque. In order to investigate the phenomena, the in-cylinder mixture formation process has been analyzed by the LIF and the CFD techniques. As the results, it has been revealed that the phenomena are caused by the inhomogeneous mixture distribution before the ignition timing.
Technical Paper

A Study on a Simulation of a Head Form Impact Against Plastic Plates

1992-09-01
922085
A Finite Element Method (FEM) simulation was conducted to predict energy-absorbing characteristics in an impact of a head form against plastic plates. Static and dynamic material tests were conducted in order to determine material properties of the plastics. The properties were applied in an explicit FEM code. The FEM results were validated through the impact tests by the head form against the same plastic plates. It was proved that the FEM could simulate the test result well, when the precise material properties were introduced in the simulation. The method can be expected to be available to predict energy-absorbing characteristics during the impact by the head form against automobile plastic components such as shell portions of instrument panels.
Technical Paper

Optimization of In-Cylinder Flow and Mixing for a Center-Spark Four-Valve Engine Employing the Concept of Barrel-Stratification

1994-03-01
940986
Flow and flame structure visualization and modeling were performed to clarify the characteristics of bulk flow, turbulence and mixing in a four-valve engine to adopt the lean combustion concept named “Barrel-Stratification” to the larger displacement center-spark four-valve engine. It was found that the partitions provided in the intake port and the tumble-control piston with a curved-top configuration were effective to enhance the lean combustion of such an engine. By these methods, the fuel distribution in the intake port and the in-cylinder bulk flow structure are optimized, so that the relatively rich mixture zone is arranged around the spark plug. The tumble-control piston also contributes to optimize the flow field structure after the distortion of tumble and to enable stable lean combustion.
Technical Paper

CFD In-Cylinder Flow Simulation of an Engine and Flow Visualization

1995-02-01
950288
Multi-dimensional transient scavenging flow simulation of a schnule scavenged two-stroke cycle engine has been carried out under motoring conditions. This paper presents the differences of the flow characteristics between crankcase compression and roots blower scavenging, obtained by different initial and boundary conditions of scavenging pressure. Furthermore, the influence of scavenging port's slant angle are shown by using the CFD visualization technique.
Technical Paper

A Study on the Effects of the Active Yaw Moment Control

1995-02-01
950303
This paper presents a new torque distribution system-“Right/Left Torque Control System”, aimed at improving a vehicle's cornering properties by using yaw moment control. The torque transfer mechanisms of this system have been analyzed. Also, a yaw moment control algorithm using yaw rate feedback control has been designed. Next, vehicle cornering properties were evaluated using numerical simulation developed from data taken from an actual vehicle. As a result, improvements were achieved in the maneuverability and stability of a vehicle during cornering.
Technical Paper

Transient Aerodynamic Simulation in Crosswind and Passing an Automobile

1997-02-24
970404
The one-box type automobile's stability on the highway is often influenced by encountering crosswinds or when passing large automobiles such as trucks and buses. This causes the automobile to behave unexpectedly. Many experiments for improving this situation have been carried out. In this respect, the analysis of transient aerodynamic characteristics is important for automobile safety and stability on the highway. Conventional transient aerodynamic simulations require a supercomputer and about million grid points. Also there were few case studies that dealt with situations such as plunging into crosswind and passing an automobile. In this paper, a transient aerodynamic simulation by using a sliding mesh of discontinuous interface and the Arbitrary Lagrangian-Eulerian (ALE) method is presented.
Technical Paper

Aerodynamic Simulations by Using Discontinuous Interface Grid and Solution Adaptive Grid Method

1997-02-24
970141
Aerodynamic simulations of automobiles with an airflow type rear spoiler (a spoiler that guides part of the flow on the roof onto the rear window of a one-box or two-box car to reduce the adhesion of snow or dust on the rear window) using a discontinuous interface grid method and around a rear view door mirror using a solution adaptive grid method are presented. These new methods have made it possible to capture the detail phenomena around equipment items such as spoilers and door mirrors, thereby improving the accuracy of the CFD (Computational Fluid Dynamics) simulations and shortening the time required.
X