Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Engine-Out Soot Emissions and the Frequency of Regeneration on Gasoline Particulate Filter Efficiency

2020-04-14
2020-01-1431
Gasoline particulate filters (GPFs) are an important aftertreatment system that enables gasoline direct injection (GDI) engines to meet current emission standardsn note of GPFs may need to improonont accumulates on the GPF during engine operation. GPFs are often ‘pa during vehicle operation when the exhaust is sufficiently hot and it contains sufficient oxygen. This paper explores the effect that engine-out soot emissions and the frequency of GPF regeneration have on GPF filtration efficiency. Two GPF technologies were tested on two engine dynamometers as well as two production vehicles on a chassis dynamometer. The engines span a wide range of engine-out particle emissions (a range of almost one order of magnitude). The filtration efficiency of the GPFs were measured with a regulation-compliant particle number system (non-volatile particles > 23 nm), as well as with a particle counter with a lower cutoff of 2.5 nm, and with a differential mobility spectrometer.
Technical Paper

The Effects of Hydroforming on the Mechanical Properties and Crush Behaviors of Aluminum Tubes

2007-04-16
2007-01-0986
The effect of hydroforming on the mechanical properties and dynamic crush behaviors of tapered aluminum 6063-T4 tubes with octagonal cross section are investigated by experiments. First, the thickness profile of the hydroformed tube is measured by non-destructive examination technique using ultrasonic thickness gauge. The effect of hydroforming on the mechanical properties of the tube is investigated by quasi-static tensile tests of specimens prepared from different regions of the tube based on the thickness profile. The effect of hydroforming on the dynamic crush behaviors of the tube is investigated by axial crush tests under dynamic loads. Specimens and tubes are tested in two different heat treatment conditions: hydroformed-T4 (as-received) and T6. The results of the quasi-static tensile tests for the specimens in hydroformed-T4 condition show different amounts of work hardening depending on the regions, which the specimens are prepared from.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Effects of Substrate Diameter and Cell Density FTP Performance

2007-04-16
2007-01-1265
An experiment was performed with a 1.3L catalytic converter design containing a front and rear catalyst each having a volume of 0.65 liters. This investigation varied the front catalyst parameters to study the effects of 1) substrate diameter, 2) substrate cell density, 3) Pd loading and 4) Rh loading on the FTP emissions on three different vehicles. Engine displacement varied from 2.4L to 4.7L. Eight different converters were built defined by a Taguchi L-8 array. Cold flow converter restriction results show the tradeoff in converter restriction between substrate cell density and substrate diameter. Vehicle FTP emissions show how the three vehicles are sensitive to the four parameters investigated. Platinum Group Metals (PGM) prices and Federal Test Procedure (FTP) emissions were used to define the emission value between the substrate properties of diameter and cell density to palladium (Pd) and rhodium (Rh) concentrations.
Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

2007-04-16
2007-01-1552
This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

DOE Analysis of Factors Affecting Ultimate Strength of Multiple Resistance Spot Welded Joints

2007-04-16
2007-01-1661
More than 200 tensile-shear resistance spot welded specimens were produced and tested to analyze the effect of spot weld spacing, weld size, sheet thickness, and adhesive on the ultimate strength of joints made from a mild hot dip galvannealed steel and an unexposed quality hot dip galvannealed 590 MPa minimum tensile strength dual phase steel (DP590). The geometric layout parameters were analyzed by a design of experiment (DOE) approach. The analysis showed that weld size is a primary factor affecting the strength of the joints for a given material. It was also determined that structural adhesive created a large relative strengthening for joints made from the mild steel. Interactions of the geometrical factors are also presented.
Technical Paper

Development of Vehicle Exhaust Flow Measurement Calibration Device

2004-03-08
2004-01-1436
Vehicle exhaust flow is difficult to measure accurately and with high precision due to the highly transient nature of the cyclic events which are dependent on engine combustion parameters, varying exhaust gas compositions, pulsation effects, temperature and pressure. Bag mini-diluter (BMD) is becoming one of the few technologies chosen for SULEV and PZEV exhaust emission measurement and certification. A central part of the BMD system is an accurate and reliable exhaust flow measurement which is essential for proportional bag fill. A new device has been developed to accurately and reliably calibrate exhaust flow measurement equipments such as the E-Flow. The calibration device uses two different size laminar flow elements (LFE), a 40 CFM (1.13 m3/min) LFE for low end calibration and a 400 CFM (11.32 m3/min) LFE for higher flows. A blower is used to push flow through a main flow path, which then divides into two flow pathways, one for each of the two LFE's.
Technical Paper

Comparison of Indoor Vehicle Thermal Soak Tests to Outdoor Tests

2004-03-08
2004-01-1376
Researchers at the National Renewable Energy Laboratory conducted outdoor vehicle thermal soak tests in Golden, Colorado, in September 2002. The same environmental conditions and vehicle were then tested indoors in two DaimlerChrysler test cells, one with metal halide lamps and one with infrared lamps. Results show that the vehicle's shaded interior temperatures correlated well with the outdoor data, while temperatures in the direct sun did not. The large lamp array situated over the vehicle caused the roof to be significantly hotter indoors. Yet, inside the vehicle, the instrument panel was cooler due to the geometry of the lamp array and the spectral difference between the lamps and sun. Results indicate that solar lamps effectively heat the cabin interior in indoor vehicle soak tests for climate control evaluation and SCO3 emissions tests. However, such lamps do not effectively assess vehicle skin temperatures and glazing temperatures.
Technical Paper

Diesel SCR NOx Reduction and Performance on Washcoated SCR Catalysts

2004-03-08
2004-01-1293
This paper describes a study of ternary V2O5/WO3/TiO2 SCR catalysts coated on standard Celcor® and new highly porous cordierite substrates. At temperatures below 275°C, where NOx conversion is kinetically limited, high catalyst loadings are required to achieve high conversion efficiencies. In principle there are two ways to achieve high catalyst loadings: 1. On standard Celcor® substrates the washcoat thickness can be increased. 2. With new highly porous substrates a high amount of washcoat can be deposited in the walls. Various catalyst loadings varying from 120g/l to 540 g/l were washcoated on both standard Celcor® and new high porosity cordierite substrates with standard coating techniques. Simulated laboratory testing of these samples showed that high catalyst loadings improved both low temperature conversion efficiency and high temperature ammonia storage capacity and consequently increased the overall conversion efficiency.
Technical Paper

Errors in the Driveline System Balancing Process

2001-04-30
2001-01-1504
Single-plane balancing is a very well-understood process, whereby an imbalance vector is determined and then opposed by a similar vector of equal magnitude but 180° out of phase. This is used in many situations to improve machine performance, vibration, noise etc. However, there is inherent in this process a sensitivity to errors of measurement and correction, since a large imbalance vector and the equally large correction vector must be of exactly equal magnitude and exactly 180° apart for perfect balance. This paper examines the effect of errors in measurement of the initial imbalance and correction of it on the residual balance of automotive drivelines. In particular, it examines the effects of the errors present in a system whereby a system balance correction is made, on a driveline assembly, at discrete points around a given plane (at bolt locations). Errors occur in measurement of vibration, in calculating correction masses and in applying those correction masses.
Technical Paper

Determination of the noise contributions of engine surfaces

2001-04-30
2001-01-1482
One of the key elements in efforts to minimize the noise emmissionis of engines and other machinery is the knowledge of the main noise radiating surfaces and the relation between measurable surface vibration and the sound pressure. Under the name of Airborne Source Quantification (ASQ), various techniques have been developed to discretize and quantify the source strength, and noise contributions, of vibrating surface patches of machinery or vehicle components. The noise contributions of patches to the sound pressure at specific locations in the sound field or to the total radiated sound power are identified. The source strength of equivalent point sources, the acoustic transfer from the source surface to critical sound field locations and finally the sound pressure contributions of the individual patches are quantified. These techniques are not unique to engine application, but very relevant for engine development. An example is shown for an engine under artificial excitation.
Technical Paper

Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling

2001-04-30
2001-01-1519
This paper describes the use of Vibro-Acoustics numerical modeling for prediction of an Air Intake System noise level for a commercial vehicle. The use of numerical methods to predict vehicle interior noise levels as well as sound radiated from components is gaining acceptance in the automotive industry [1]. The products of most industries can benefit from improved acoustic design. On the other hand, sound emission regulation has become more and more rigorous and customers expect quieter products. The aim of this work it is to assess the Vibro-Acoustics behavior of Air Intake System and influence of it in the sound pressure level of the vehicle.
Technical Paper

Active Boom Noise Damping of Dodge Durango

2001-04-30
2001-01-1614
Two active boom noise damping techniques using a Helmholtz resonator-based compensator and a lead compensator called a positive pressure feedback have been developed at the University of Dayton [1]. The two damping techniques are of feedback type and their compensators can be implemented in software or hardware (using inexpensive operational amplifiers). The active damping system would rely on a speaker, a low-cost microphone, two accelerometers, and an electronic circuit (or a micro-controller) to add damping to the offending low-frequency vibroacoustic modes of the cavity. The simplicity of the active boom noise damping system lends itself to be incorporated into a vehicle's sound system. The Helmholtz resonator-based strategy is implemented on a Dodge Durango sport utility vehicle. The control scheme adds appreciable amount of damping to the first cavity mode and the first structurally induced acoustic mode of the cabin.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
Technical Paper

Identification of Malfunctions During EMC Tests in Networked Vehicles

2004-03-08
2004-01-1707
Modern vehicles contain a multitude of networked electronics. This feature causes distributed functions in distributed electronics. Malfunctions occurring during EMC testing cannot be allocated precisely without detailed knowledge of the data streams. The electromagnetic environment during EMC-testing limits the possibilities of using standard solutions to detect these malfunctions. The paper will present a new tool, which is able to track the data streams in a CAN-Bus system during EMC-testing. By integrating EMC related parameters in the existing data stream of the vehicle's data bus, it is possible to keep a record of malfunctions as they occur.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

A PG-Based Powertrain Model to Generate Component Loads for Fatigue Reliability Testing

2003-03-03
2003-01-1223
Once a vehicle powertrain is designed and the first prototype is built, extensive on-board instrumentation and testing needs to be carried out at the proving grounds (PG) to generate load histograms for various components. The load histograms can then be used to carry out durability tests in the laboratory. When a component in the vehicle powertrain is changed, the load histograms need to be generated again at the proving grounds. This adds much time and money to the vehicle's development. The objective is to develop a virtual powertrain model that can be simulated through a powertrain endurance driving cycle in order to predict torque histograms and total damage. The predictions are then correlated against measured data acquired on a test vehicle that was driven through the same driving cycle at the proving grounds.
Technical Paper

Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles

2017-03-28
2017-01-0924
Recently, the European Union has adopted a new regulation on Real-Driving-Emissions (RDE) and also China is considering RDE implementation into new China 6 legislation. The new RDE regulation is focused on measuring nitrogen oxides (NOx) and particulate number (PN) emissions of both light-duty gasoline and diesel vehicles under real world conditions. A supplemental RDE test procedure was developed for European type approval, which includes on-road testing with cars equipped with portable emission measurement systems (PEMS). This new regulation will significantly affect the engine calibrations and the exhaust gas aftertreatment. In this study the impact of the new RDE regulation on two recent EU 6b certified turbocharged direct injected gasoline vehicles has been investigated. A comparison of several chassis dyno drive cycles with two new defined on-road RDE cycles was performed.
Technical Paper

Catalyst Technologies for Gasoline Engines with Respect to CO2 Reduction

2011-01-19
2011-26-0027
Besides the further reduction of the harmful gaseous emissions (HC, CO and NOx) to reach upcoming emission limits, the discussion on lowering the CO₂ emissions is omnipresent. From engine development point of view further optimization of the stoichiometric-operated gasoline engine as well as the introduction of lean-operated engines are the main development trend. The emission control system can support the engine development by dedicated catalyst technologies as presented in this paper. A new family of TWC technologies offers to tune the catalyst system to the engine performance and the back pressure requirement - which helps to reduce CO₂ emissions. In addition these technologies show improved performance in HC, CO, NOx light-off, and in CO and NOx conversions under dynamic conditions - this again can positively impact the CO₂ emissions as less harsh heating strategies for cold start is required.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
X