Refine Your Search

Topic

Author

Search Results

Journal Article

Investigation of Ultrasonic Flow Measurement for CVS Dilution Air Volume

2017-03-28
2017-01-0994
Direct measurement of dilution air volume in a Constant Volume emission sampling system may be used to calculate tailpipe exhaust volume, and the total dilution ratio in the CVS. A Remote Mixing Tee (RMT) often includes a subsonic venturi (SSV) flowmeter in series with the dilution air duct. The venturi meter results in a flow restriction and significant pressure drop in the dilution air pipe. An ultrasonic flow meter for a similar dilution air volume offers little flow restriction and negligible pressure drop in the air duct. In this investigation, an ultrasonic flow meter (UFM) replaces the subsonic venturi in a Remote Mixing Tee. The measurement uncertainty and accuracy of the UFM is determined by comparing the real time flow rates and integrated total dilution air volume from the UFM and the dilution air SSV in the RMT. Vehicle tests include FTP and NEDC test cycles with a 3.8L V6 reference vehicle.
Journal Article

Dividing Flow-Weighted Sampling Approach in Partial Flow Dilution System for Particulate Emission Measurement in Internal Combustion Engine Exhaust

2018-04-03
2018-01-0645
Light-duty vehicle emission measurement test protocols defined in the Code of Federal Regulation (40 CFR Part 1066) allow sampling particulate matter (PM) of all phases of Federal Test Procedure (FTP-75) on a single PM sampling filter by means of flow-weighted sampling in order to increase PM mass loaded on the filter. A technical challenge is imposed especially for partial flow dilution systems (PFDS) to maintain a precise dilution ratio (DR) over such a wide sample flow range due to the subtraction flow determination method of dilution air and diluted exhaust flows, because the flow difference is critical at high DR conditions. In this study, an improved flow weighting concept is applied to a PFDS by installing a bypass line with a flow controller in parallel with the PM sampling filter in order to improve DR accuracy during flow-weighted sampling.
Technical Paper

Real Time Analysis of Particulate Matter by Flame Ionization Detection

1998-02-01
980048
The next generation of diesel engines will require substantial reductions in particulate matter (PM) emissions. In addition to strict regulations, one of the major problems in the development is the lack of sophisticated real-time PM analyzers. The current PM measurement technology consists of a dilution tunnel and filter weighing technique that was developed before the 1980s.(1) Such technology has reached its limit for today's diesel exhaust monitoring requirements in terms of response time and sensitivity. A flame ionization detector (FID), commonly used for measuring hydrocarbons, is proposed as a new analyzer for PM. In the past, spike signals observed from the FID when measuring diesel exhaust have been considered noise and a lot effort has been spent to reduce such interference from the slower FID signal. However, given a fast response time FID, these spike signals could be used to represent PM concentration in the sample.
Technical Paper

Design of a Pusher for a Crimp Using Finite Element Shape Optimization

1998-09-14
982060
Design analysts, who work with finite element shape optimization, face a daunting task of handling cylindrical parts like a pusher for a crimp. The shape vectors generated by any of the existing methods/tools cannot constrain nodes to move in a circular path. Since the pusher is not a complete cylinder and the loading is only along axial direction, shape optimization was performed after flattening out the cylindrical pusher. The existing shape optimization tools could now be applied to the flat plate. A numerical interpolation method, based on ‘Autodv’, has been used to generate shape vectors. Both weight and stresses have been brought down and the final design was verified with solid finite element analysis.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

Development and Applications of an Analytical Tool for Piston Ring Design

2003-10-27
2003-01-3112
A comprehensive and robust analytical tool was developed to study three-dimensional (3D) ring-bore and ring-groove interactions for piston rings with either symmetric or asymmetric cross-section. The structural response of the ring is modeled with 3D finite element beam method, and the interfaces between the ring and the bore as well as between the ring and the groove are modeled with a simple asperity contact model. Given the ring free shape and the geometry of the cross-section, this analytical tool can be used to evaluate the ring-bore and ring-groove conformability as well as ring twist angle distribution under different constraints. Conversely, this tool can be used to calculate the free shape to provide the desired ring-bore contact pressure distribution for specific applications.
Technical Paper

Microstructure and Mechanical Properties of Welded Thermoplastics

2004-03-08
2004-01-0732
Thermoplastics have been used increasingly for automobile components for both interior and under-the-hood applications. The plastic parts are made through various molding process such as compression molding, injection molding and blow molding. For parts with large or complicated geometry, small portions of the part may have to be molded first, then joined together using a welding process. The welded regions usually exhibit inhomogeneous and inferior mechanical performance compared to the bulk regions due to the differences in thermal history. The microstructures and mechanical properties of welded thermoplastics have been examined using hot-plate welded polyethylene. The specimens are prepared at various thermal conditions to simulate the real welding process. The thermal properties in welds are monitored using DSC (Differential Scanning Calorimetry) and the crystallinities are calculated.
Technical Paper

Finite Element Topography and Shape Optimization of a Jounce Bumper Bracket

2002-03-19
2002-01-1468
A case study of the application of topography and shape optimization techniques to the design of a jounce bumper bracket of a pick-up truck has been presented. First a sizing (gage) optimization was undertaken to redesign the jounce bumper bracket. Since the weight was not satisfactory it was decided to try shape optimization. A better solution was obtained. Topography optimization, a relatively new technique of bead formation, was then applied and a still better solution was obtained. All these options were presented to the designer to enable him to make a decision based on manufacturing and other constraints. Although all the three solutions seems to give good results the topography optimized jounce bracket results in the least weight, with the penalty of an additional manufacturing operation.
Technical Paper

On the Use of Spatial Transmissibility to Evaluate the NVH Performance of Engine Cover Assembly

2002-03-04
2002-01-0458
In the present study, the NVH performance of an engine valve cover assembly is analyzed by the use of “spatial transmissibility (TR)”. It is a measure of the spatial response of the cover relative to the spatial response of the underlying structure to which it is connected. A prototyped engine valve cover assembly is examined. The cover transmissibility is computed through the finite element method and also measured by experimental testing. Various isolation systems have been examined and different cover materials have been investigated, including magnesium and thermosetting plastic. The transmissibility provides a strategy for evaluating the NVH characteristic of engine cover assembly in a much more timely, cost-effective manner, while the product is still in the early conceptual stage.
Technical Paper

Acoustic Analysis of Isolated Engine Valve Covers

2003-05-05
2003-01-1674
The powertrain engine is a major source of vibration and noise in automotive vehicles. Among the powertrain components, the valve cover has been identified as one of the main noise contributors due to its large radiating surface and thin shell-like structure. There has been an increasing demand for rapid assessment of the valve cover noise level in the early product design stages. The present study analyzes the radiated sound pressure level (SPL) of a valve cover assembly using the finite element method (FEM). The analysis is first performed using a fully coupled structural-acoustic approach. In this case the solid structure is directly coupled to the enclosed and surrounding air in a single analysis, and the structural and acoustic fields are solved simultaneously. In the next approach, the analysis is performed in a sequential manner, using a submodeling technique. First, the structural vibration of the cover is analyzed in the absence of the surrounding air.
Technical Paper

Clutch Engagement Simulation: Engagement Without Throttle

1992-02-01
920766
The present research constitutes an engineering approach to the performance level prediction of starting a vehicle without use of a throttle. The study is based on a dynamic clutch engagement model. A computer simulation of engagement dynamics is used in order to study the lock-up mechanism and to develop proper prediction procedures. In addition, the engagement model is used to develop guidelines and recommendations in order to optimize the engagement system including clutch components, clutch controls, and engine controls. The mathematical model presented in this paper incorporates important, new features in comparison to similar models from previous publications. Consisting of two inertias, it includes not only elastic properties of the clutch damper but also varying engine torque and clamping (pressure) force. Functions of engine torque and plate load simulate the actual control process, including human factors.
Technical Paper

Automotive Emission Analyses using FTIR Spectrophotometer

1992-02-01
920723
Two new techniques have been applied to FTIR emission analysis which add significant potential to automotive emission measurement. One of these is the use of the mathematical multivariate analysis which is called the partial least squares method. This spectrum discrimination technique, in combination with high resolution spectrum data, enables superior analysis for heavy-overlapping species in the emission. The other technique is a flow conditioned gas sampling cell which is designed especially for real time emission measurement. The flow in the gas cell has been analyzed with computer simulation and the gas cell has a flow conditioner inside with a 10 meter optical path. Seven seconds of 90 percent gas replacement time can be achieved with this cell. As a result, highly accurate realtime data can be obtained with relatively fast response. In this paper, spectrum factors extracted from overlapping species and quantification simulations are shown using standard gases.
Technical Paper

Quality and Productivity: An Answer to the Question

1992-02-01
920797
Who will repair the cars of the future? By the year 2001 there will be over 200 million vehicles registered in the United States. The closing of many new car dealerships and the reduction of service bays at oil companies are contributing to the decline of traditional service outlets to repair vehicles. Certain trends, however, are emerging that indicate that a shortage of auto repair technicians will not exist. Vehicles have been improved and maintenance schedules and warranties have been extended. The quality of the modern vehicle has impacted some traditional types of auto repair that used to be done. Rustproofing and engine tune-ups are just two such businesses. Factory rustproofing and the use of rust resistant materials have forced muffler shops and rustproofing businesses to change their repair focus. Tune-up services have changed to engine performance services because of the change in vehicle technology.
Technical Paper

Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector

1992-02-01
920382
This paper presents an atomization mechanism of a spray injected into the low-pressure field, as the subject of injection system in a suction manifold of gasoline engine. Pure liquid fuel, which is n-Pentane or n-Hexane is injected into quiescent gaseous atmosphere at room-temperature and low- pressure through pintle type electronic control injector. Fuel sprays are observed by taking photographs for variation of the back pressure and the changes in spray characteristics with the back pressure below atmospheric pressure are examined in detail. In particular, in the case of the back pressure below the saturated vapor pressure of fuel, the atomization mechanism is discussed from a viewpoint of flash boiling phenomena, those are bubble growth rate and so on.
Technical Paper

Optimized On-Board PM Analyzer Consisting of Real-Time Diffusion Charger Sensor and Particulate Sampler

2016-04-05
2016-01-0993
Recently, it was reported that the atmospheric pollution levels of nitrogen dioxide (NO2) and particulate matter (PM) are not decreasing despite the introduction of stricter vehicle emission regulations. The difference between conditions of the test cycles defined by the vehicle emission regulations and the real driving can contribute to the differences between expected and actual pollution levels. This has led to the introduction of in-use vehicle emission monitoring and regulations by means of a portable emission measurement system (PEMS). An optimized on-board PM analyzer was developed in this study. The on-board PM analyzer is a combination of a partial flow dilution system (PFDS) particulate sampler and a diffusion charger sensor (DCS) for real-time PM signals. The measuring technology and basic performance of the analyzer will be explained. Acceleration of the vehicle can cause uncertainty of flow measurement in the PM sampler.
Technical Paper

NH3 Measurements for Advanced SCR Applications

2016-04-05
2016-01-0975
Since the introduction of Euro IV legislation [1, 2], Selective Catalytic Reduction (SCR) technology using liquid urea injection is (one of) the primary methods for NOx reduction in many applications. Ammonia (NH3) is the reagent and key element for the SCR system and its control calibration to meet all operational requirements. TNO and Horiba are highly motivated to facilitate a correct interpretation and use of emissions measurement data. Different hypotheses were defined to investigate the impact of temperatures and flow rates on urea decomposition. These parameters are known to strongly affect the urea decomposition process, and thus, the formation of NH3. During a test campaign, different SCR catalyst feed gas conditions (mass flow, temperature, species and dosing quantities) were applied. Three Horiba FTIR gas analyzers were installed to simultaneously sample either all upstream or all downstream of the SCR brick. Both steady-state and dynamic responses were evaluated.
Technical Paper

Portable Emissions Measurement System for Solid Particle Number Including Nanoparticles Smaller than 23 nm

2017-10-08
2017-01-2402
Fine particle emissions from engine exhaust have attracted attention because of concern of their higher deposition fraction in alveoli. Since it was observed that sizes of solid particles in exhaust of conventional internal combustion engine technologies are mainly distributed above 30 nm and the mainly irreproducible sensitivity to volatile particles can be reduced, the current solid particle number (PN) measurement methodology was targeted to PN emissions particles larger than 23 nm. The necessity of the measurement of particles smaller than 23 nm is now under discussion. It is also surmised that there is difference between emissions under regulatory defined test cycles and real driving conditions. Currently, implementation of further real driving emission regulations utilizing portable emissions measurement systems (PEMS) is in place for the EU and being actively discussed in other regions.
Technical Paper

A New On-Board PN Analyzer for Monitoring the Real-Driving Condition

2017-03-28
2017-01-1001
An on-board solid particle number (PN) analyzer (OBS-ONE-PN) has been developed to measure PN concentrations in engine exhaust under real-driving conditions. Specification of OBS-ONE-PN is based on the recommendation in PEMS-PN draft. OBS-ONE-PN consists of primary diluter, heated transfer tube, heated catalytic stripper (CS), secondary dilutor and particle detector. Volatile fractions which is emitted from the automobile engine are removed by CS, and then only solid particles are counted by a condensation particle counter (CPC). Finally, the system provides results in number concentration. The detailed specifications relating to the OBS-ONE-PN performance such as dilution factor accuracy, volatile particle removal efficiency, overall detection efficiency and durability test results are described in this paper The OBS-ONE-PN is used to characterize PN emission from a gasoline vehicle.
Technical Paper

Emission Testing of N2O (Bag Sampling) from Diverse Vehicles by Laser Spectroscopic Motor Exhaust Gas Analyzer

2011-04-12
2011-01-1155
The United States Environmental Protection Agency (EPA) has finalized a reporting rule for the Greenhouse Gases (GHGs) emissions including Nitrous Oxide (N₂O) from all sectors of the economy. In addition, EPA and the National Highway Traffic Safety Administration (NHTSA) have been working together on developing a National Program of harmonized regulations to reduce GHGs emissions and improve fuel economy of light-duty vehicles (LDV). As a consequence, the limiting value for N₂O emission from LDV is set to 0.01 g/mile. Considering this regulatory limit of N₂O emission from LDV, if the exhaust gas is diluted and stored in a sample storage bag, the concentration of N₂O becomes very low which requires a highly sensitive analyzer for accurate measurement. In the previous study, an instrument based on Quantum Cascade Mid-IR Laser (QCL-Mid IR) Spectroscopy has been developed for measuring ultra-low level of N₂O in automobile exhaust gas sampled in a sample storage bag.
Technical Paper

Transient Vehicle Exhaust Flow Measurement Techniques

2006-04-03
2006-01-1360
The accuracy of low-level emission measurements has become increasingly important, due to the development and implementation of ULEV, SULEV, and PZEV vehicles. Measurement of these decreasing levels of automotive emissions requires new sampling and measuring techniques. Several alternative emission sampling techniques have been investigated to minimize measurement variability and maximize system repeatability. An alternative technique to obtain accurate low-level emissions measurement from SULEV vehicles is the Bag Mini-Diluter, which uses a proportional signal from an Exhaust Volume Measurement Device to sample vehicle exhaust. Crucial to successful proportional sampling of vehicle exhaust flow is the performance of the Exhaust Flow Measurement Device. This study evaluates an Exhaust Volume Measurement Device commonly used with a Bag Mini-Diluter.
X