Refine Your Search

Topic

Search Results

Technical Paper

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

2007-05-15
2007-01-2417
Finite element modeling has been used extensively nowadays for predicting the noise and vibration performance of whole engines or subsystems. However, the elastomeric components on the engines or subsystems are often omitted in the FE models due to some known difficulties. One of these is the lack of the material properties at higher frequencies. The elastomer is known to have frequency-dependent viscoelasticity, i.e., the dynamic modulus increases monotonically with frequency and the damping exhibits a peak. These properties can be easily measured using conventional dynamic mechanical experiments but only in the lower range of frequencies. The present paper describes a method for characterizing the viscoelastic properties at higher frequencies using fractional calculus. The viscoelastic constitutive equations based on fractional derivatives are discussed. The method is then used to predict the high frequency properties of an elastomer.
Technical Paper

A Novel Formula for Instantaneous Coefficients of Sliding Friction in Gearing

2007-10-30
2007-01-4207
Gear tooth friction directly influences power losses and temperature rise as well as system dynamic behavior. Recently it attracted many attentions as friction is considered one of the main sources of power losses in geared systems, such as in automotive transmissions. Coefficient of friction has been found not a constant but varies with different contact conditions, which partly makes the measurement of friction a difficult and expensive process. Therefore an analytical model that is capable of predicting it accurately becomes very much demanded. A few empirical formulae based on experimental data and analytical models based on lubrication theory are found in the literature. However, they are either not suitable for a general gear contact or too complex to adapt in gearing. In this paper, a new coefficient of sliding friction based on a thermal Elastohydrodynamic Lubrication (EHL) model is developed by a multiple linear regression analysis.
Technical Paper

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

2007-04-16
2007-01-0981
Hydroformed components are replacing stamped parts in automotive frames and front end and roof structures to improve the crash performance of vehicles. Due to the increasing application of hydroformed components, a better understanding of the crash behavior of these parts is necessary to improve the correlation between full-vehicle crash tests and FEM analysis. Accurately predicting the performance of hydroformed components will reduce the amount of physical crash testing necessary to develop the new components and new vehicles as well as reduce cycle time. Virgin material properties are commonly used in FEM analysis of hydroformed components, which leads to erroneous prediction of the full-vehicle crash response. Changes in gauge and material properties during the hydroforming process are intuitive and can be reasonably predicted by using forming simulations. The effects of the forming process have been investigated in the FEA models that are created for crash analyses.
Technical Paper

The Limitations of Fatigue Testing

2010-10-05
2010-01-1908
Fatigue testing of components is used to validate new product designs as well as changes made to existing designs. On new designs it is common to initially test parts at the design stage (design verification or DV) and then again at the production stage (production verification or PV) to make sure the performance has not changed. On changes to existing designs typically the life of the new part (B) is compared to that of the old part (A). When comparing the fatigue life Weibull analysis is normally used to evaluate the data. The expectation is that the B10 or B50 life of the new part or PV parts should be equal to or better than that of the old parts or the DV parts. However, fatigue testing has a great deal of inherent variability in the resulting life. In this paper the variability of numerous carburized and induction hardened components is examined.
Technical Paper

Application of Response Surface Methodology to Model Material Thinning in a Chassis Cross Member

2003-03-03
2003-01-1150
In this study an effort has been made to establish a response surface model to predict material thinning in a stamped chassis cross member. Numerical simulations using finite element method were performed to populate the data needed for response surface analysis. The results predicted by the response surface model were compared with the results of numerical simulations and were found to be in good agreement. The effect of corner radius, flange radius and flange height on material thinning was investigated using the response surface model.
Technical Paper

Development of the Methodology for 3-D Characterization of Oil Seal Shaft Surfaces

2002-03-04
2002-01-0661
Shaft surface texture plays a very important role in rotary oil seal system performance. Functionally, the shaft surface has to prevent oil leakage via pumping between the shaft and seal. The shaft surface texture must also provide adequate contact with the seal lip, while maintaining a lubricant film. Furthermore, the initial surface texture of the shaft plays a vital role in the process of oil seal lip break-in. The shaft surface finish specification is typically Ra, 10 to 20 μ″ with a 0° ± 0.05°lead angle. The paper will describe a new surface measurement method based on interference microscopy, which generates a visual representation of a significant portion of the shaft surface texture to allow direct lead angle detection. Using this new technique, this paper will demonstrate the heredity of lead generation. The shaft 3D surface texture measurement also provides a measure of the surface volume available for lubricant retention.
Technical Paper

Monotonic Tension, Strain Controlled Fatigue and Fracture Toughness Properties of a Ductile Iron

2003-03-03
2003-01-0832
The objective of this work is to test and develop monotonic tensile properties and strain controlled fatigue properties of a cast ductile iron. The test data and the related material constants will be used in conjunction with vehicle loading data to perform finite element stress-strain analysis and fatigue life prediction analysis to aid in the design of automotive components made from ductile iron. Currently, such material property data does not exist in the literature for this particular grade of ductile iron. Monotonic tension and fully reversed strain controlled fatigue tests were conducted by following ASTM E-8, ASTM E-606, and SAE J-1099 on samples machined from the cast ductile iron. Monotonic tensile properties were obtained, including Young's modulus, yield strength, ultimate tensile strength, elongation, reduction in area, strength coefficient K, and strain hardening exponent n.
Technical Paper

Mechanical Properties of Gear Steels and Other Perspective Light Weight Materials for Gear Applications

2006-10-31
2006-01-3578
To improve fuel economy and possibly reduce product cost, light weight and high power density has been a development goal for commercial vehicle axle components. Light weight materials, such as aluminum alloys and polymer materials, as well as polymer matrix composite materials have been applied in various automotive components. However it is still a huge challenge to apply light weight materials in components which are subject to heavy load and thus have high stresses, such as gears for commercial vehicle axles or transmissions. To understand and illustrate this challenge, in this paper we will report and review the current state of art of carburized gear steels properties and performance.
Technical Paper

Virtual Development of High-Tonnage Hydroform Press

2006-04-03
2006-01-1656
This paper discusses the virtual development process used to support design of a high-tonnage hydroform press. It also discusses the optimized design for structural integrity while achieving low target cost. Other considerations included optimization of setup issues such as press fabrication and assembly. Due to tightly constrained development time, a diverse range of CAE methodologies were used to refine and validate the design. Detailed linear and nonlinear finite element models were developed to provide the required accuracy in the critical regions of the press structure. From these detailed models simplified analytical tools were developed to calculate the key press parameters such as alternating stress and predicted fatigue life. Finite element models were validated with physical strain gage measurements from an array of strain gages installed on the production presses.
Technical Paper

Virtual Testing: Fatigue Life (S-N Curves) Simulations for Commercial Vehicle Axle Components

2004-10-26
2004-01-2700
Current trends in vehicle development, including both automotive and commercial vehicles, are characterized by short model life cycles, reduced development time, concurrent design and manufacturing development, reduced design changes, and reduced total cost. All of these are driven by customer demand of higher load capacity, reduced weight, extended durability and warranty requirement, better NVH performance and reduced cost. These trends have resulted in increased usage of computational simulation tools in design, manufacturing, and testing, i.e. virtual testing or virtual prototyping. This paper summarizes our work in virtual testing, i.e. fatigue life simulations using computational fracture mechanics for commercial vehicle axle gearing development. First, fatigue life simulation results by using computational fracture mechanics CRACKS software were verified by comparing with gear teeth bending fatigue test data and three point bending fatigue test data.
Technical Paper

Implications of Shape Optimization in Structural Design

2004-10-26
2004-01-2712
Traditional methods often lead to truck component designs that are overly conservative. The ever-increasing need to reduce operational costs demands innovative means for producing parts that are light, durable and capable of carrying more loads. This paper discusses the far-reaching advantages of shape-optimization, beyond the fundamental stipulation of weight reduction. A suspension link is considered to demonstrate the benefits of an optimally shaped component.
Technical Paper

Investigation and Application of Contact Methodologies in Finite Element Analyses of Hydroform Tooling Systems

2006-04-03
2006-01-0788
In this study, the finite element analysis of hydroform tooling system using three different surface-to-surface contact methodologies is evaluated, such as the traditional non-linear gap element methodology, the newer linear gap technology and the 3D non-linear surface contact algorithm. These methods are investigated with the help of case studies, from exercise model level to more complicated models of real parts. Key parameters like analysis results, computational time and ease of use for each method are discussed. Directions regarding adaptivity to local user’s software resources and implementation strategies are provided. The linear gap method is observed to be more effective as pre-processing and computing time with same accuracy results as the non-linear static method in the design stage of hydroform tools analysis with pure sliding.
Technical Paper

Contact Fatigue Tests and Life Simulations Using Computational Fracture Mechanics

2005-10-24
2005-01-3806
Computational fracture mechanics based FATIG3D program was used to simulate contact fatigue life of rough surface contacts in boundary to mixed lubrication regimes. Two-rollers contact fatigue tests were conducted and test results were compared with calculated contact fatigue lives. Calculated contact fatigue life agreed with test results well with the selected set of input data. The effect of several important parameters in the input data on contact fatigue life was evaluated computationally using FATIG3D. These parameters include: oil pressure distribution, crack face friction, direction of friction, friction coefficient, initial crack length, Hertzian stress, and residual stress distributions. The results obtained in this work improved basic understanding and the application of FATIG3D in simulating contact fatigue behavior.
Technical Paper

Seal Friction Effect on Drive Axle Efficiency

2005-10-24
2005-01-3779
As a part of a major research program with the aim of improving heavy truck drive axle fuel efficiency, this work focuses on seal friction torque test development and establishing pinion seal and wheel seal friction torque baseline data. Pinion seal and wheel seal friction torque was measured. The effect of speed and temperature on pinion seal friction torque was assessed. The effect of several coatings on pinion seal friction torque was evaluated. Pinion seal friction torque was also calculated and calculation result was compared with test data. Finally the impact of seal friction and bearing friction on total drive axle power loss was discussed.
Technical Paper

Contact Fatigue Tests and Contact Fatigue Life Analysis

2005-04-11
2005-01-0795
The main objective of this paper is to investigate contact fatigue life models and to evaluate the effect of surface finish on contact fatigue life. The effect of surface finish on contact fatigue life was investigated experimentally using two roller contact fatigue tests. The test samples, i.e. rollers, were carburized, quenched and then tempered. Two different roller surface finishes were evaluated: machined and as heat-treated surface (baseline rough surface) vs. super finished surface (smooth). Because many factors are involved in sliding/rolling contact fatigue, contact fatigue modeling is still in the early development stage. In this work, we will analyze our contact fatigue test results and correlate contact fatigue life with several empirical contact fatigue models, such as the lambda ratio, a new surface texture parameter, and a normalized pitting model which includes Hertzian Stress, sliding, surface roughness and oil film thickness.
Technical Paper

Microwave Plasma Carburization of Steel Alloys at Atmospheric Pressure

2005-04-11
2005-01-0989
Microwave plasmas at atmospheric pressures can be utilized for carburization of steel alloys. Due to their high frequencies, microwaves ionize and dissociate molecules with great efficiency and provide carbon for carburization by dissociating hydrocarbons that are introduced in the plasma. Also, conventional carburization techniques are not very energy efficient, as much of the heat generated is not utilized for the heating of the parts. Microwave plasmas are highly energy efficient due to very high coupling of microwaves to the plasma and then transferring of heat to the parts. Since plasma surrounds the part uniformly, heating rates over the part surface are also uniform. Preliminary results are presented for carburization of steel alloy 8620H by atmospheric microwave plasma process using acetylene as the source gas. Possible effects of application of pulsed DC bias to the parts are also discussed.
Technical Paper

Calculation of True Six-Sigma Hose Crimp Compression Ranges Using Probabilistic Design Techniques

2005-04-11
2005-01-1608
Compression is a key design attribute of both compressible seals and coupled hose systems. Traditional design techniques use 3-sigma upper and lower limits from capability studies on critical component dimensions to estimate potential compression variation. Probability calculations are shown that indicate that the true variation in compression is much less than this estimate. An alternative approach using probabilistic design techniques to calculate true 6-sigma (+/-3-sigma) compression variation is shown for both a typical radial seal and a hose coupling. The results are then compared to Monte Carlo simulations using representative data sets for each critical dimension.
Technical Paper

Development of a Maintenance Free Self-Lubricating Ball Joint

1999-03-01
1999-01-0036
Vehicular suspension ball joints can be categorized in the family of tribological systems which can reduce useful service or working capacity through malfunction or breakdown. Detailed metallurgical analysis of the friction and wear mechanisms on typical ball joint bearing surfaces point to a Teflon-based woven fabric, self-lubricating liner as the best bearing material for the joint. Laboratory functional testing was conducted on modern, 4-axis test equipment simulating the applicable loading and motion conditions typically encountered in use. The self-lubricated bearing liner woven with Teflon thread demonstrated higher sustained load capacity, less rotating friction, excellent torque retention qualities and extended life in comparison to existing components utilizing greased metal-on-metal and/or “plastic” bearing materials.
Technical Paper

Modeling of Fuel Line Wave Propagation Induced by Injector Operation

2000-03-06
2000-01-0563
Wave propagation in a fuel line bounded on one end by a pressure regulator creating a constant head and on the other by a single fuel injector creating a time dependent flow rate is studied. It is found that a model consisting of a linearized wave equation and a linearized injector/fuel line boundary condition (including lumped damping) is convenient for analytical work. A general closed form solution of the pertinent equations can be found in terms of a recursion relation which holds for any injection history. Representative solutions are reported for sinusoidal and step function (sudden injector opening or closing) injection histories. Solutions for step function histories are superimposed to create predictions for a variety of periodic (but nonsinusoidal) injection histories. It is found to be possible to extract limiting steady state solutions from these general transient results.
Technical Paper

Evaluating Designed Gap Closure Effect on Joint Preload

2003-03-03
2003-01-1208
The method presented utilizes the analytical design model and matrix algebra to determine the load required to close a design gap. By performing a linear analysis in MSC® Nastran, relative displacements at fastener contact points due to unit loading are collected. The stiffness equation, F = K x is used in matrix form to determine gap closure force. The effect of this force on preload should be considered in torque specifications. The method prevents overestimation of preload if closure force is not considered and underestimation if only the stiffness equation is used independently.
X