Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Numerical Investigation on Aerodynamic Effects of Vanes and Flaps on Automotive Underbody Diffusers

2017-09-19
2017-01-2163
The automotive underbody diffuser is an expansion device which works by speeding up the air flowing underneath a vehicle. This reduces the pressure below the vehicle thereby increasing downforce. When designed properly, it can lead to a massive gain in downforce and even a reduction in drag. However, a majority of the research and development is restricted to motorsport teams and supercar manufacturers and is highly secretive. Most of the publicly available research has been done for very simple shapes (bluff bodies) to study the effects of ground clearance and rake angle. Very little research has been done for complex geometries with vanes, flaps and vortex generators. This paper aims to investigate the effects of the addition of vanes/strakes and flaps, their location as well as angle, on diffuser performance. Computational Fluid Dynamics simulations have been carried out using three dimensional, steady state RANS equations with the k-ε turbulence model on STAR CCM+ V9.06.
Technical Paper

Design and Simulated Analysis of Regenerative Suspension System with Hydraulic Cylinder, Motor and Dynamo

2017-03-28
2017-01-1284
With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
Technical Paper

Design and Optimization of Composite Horizontal Axis Wind Turbine (Hawt) Blade

2018-04-03
2018-01-1034
Wind energy is clean and renewable source of energy that is an attractive alternative to non-conventional sources of energy. Due to rapid increase in global energy requirements, this form of energy is gaining its share of importance. Unlike nuclear power or tar sand oils, wind energy does not leave a long-term toxic legacy. Using MATLAB algorithms, multi-optimization of wind turbine design can be achieved. Therefore, an aerodynamic mathematical model is developed to obtain the optimal chord length and twist angle distribution along the blade span. Further, a promising generic blade design is used to initialize a detailed structure optimization wherein leading edge panel (LEP), Spar cap, Shear web, Trailing edge panel (TEP) reinforcement are sized using composite laminates so that the blade is according to the intended design standard. Initially blade airfoils are analyzed on 2D platform and then the results are used to construct 3D model of Horizontal Axis Wind Turbine (HAWT) blade.
Technical Paper

Automotive Composites and Polymer Material Selection for Fairing of a Human Powered Vehicle Using Multi-Attribute Decision Making Methodology

2016-04-05
2016-01-0526
Vehicle performance is highly dependent on the design and material used. Fairing of a Human Powered Vehicle (HPV) is responsible for the reduction in the aerodynamic drag force and its material determines the overall weight and the top speed of the vehicle. Selection of material for fairings depends on various physical, mechanical and manufacturing properties along with practical considerations like availability of material. Today, an ever-increasing variety of composite materials and polymers are available, each of them possessing their own characteristics, applications, advantages and limitations. Many automotive composites are used for manufacturing fairings. Materials like Carbon fiber, Glass fiber (E glass, S glass), Aramid fiber (Kevlar 29, Kevlar 49) are some of the viable options that have been used in the past for manufacturing fairing of HPVs.
Technical Paper

Flow Simulation and Theoretical Investigation on Aerodynamics of NACA-2415 Aerofoil at Low Reynolds Number

2015-09-15
2015-01-2576
The Aerofoil theory along with its design has integrated itself into the vast areas of applications ranging from Automobile, Aeronautical, Wind Turbine, Micro-Vehicles, UAVs applications. In this paper, knowing the intricacy of the airfoil's applications, A MATLAB Code for NACA-2415 Airfoil is developed and a Model with dimensions c=180mm, w=126mm, tmax=27mm is generated. The model is then subjected to Flow Simulation with various input parameters: Reynolds Numbers taken are- (REN-1) 105 and (REN-2) 2×105 [Laminar External Flow], Angles of attack taken are-0°, 4°, 8°, 12°. The pressure and velocity distribution along the airfoil sketch curve are graphed qualitatively, emphasizing on the flow separation leading to the transition from laminar to turbulent flow. The various aerodynamics characteristic curves for coefficient of pressure, coefficient of lift and coefficient of drag are plotted against different angle of attacks for REN-1 and REN-2.
Technical Paper

Aerodynamic Effect of Aspect Ratio of Spherical Depressions on the Bonnet of Hatchback Cars

2019-12-30
2019-01-5096
Flow separation is one of the primary causes of increase in form drag in vehicles. This phenomenon is also visible in the case of lightweight vehicles moving at high speed, which greatly affects their aerodynamics. Spherical depressions maybe used to delay the flow separation and decrease drag in such vehicles. This study aims for optimization of aspect ratio (AR) of spherical depressions on hatchback cars. Spherical depressions were created on the bonnet of a generalized light vehicle Computer-Aided Design (CAD) model. The diameter of each spherical depression was set constant at 60 mm, and the center-to-center distance between consecutive spherical depressions is fixed at 90 mm. The AR of spherical depressions was taken as the parameter that was varied in each model. ARs 2, 4, 6, and 8 were considered for the current investigation. Three-dimensional (3D) CFD analyses were then performed on each of these models using a validated computational model.
Technical Paper

Effect of Fender Coverage Angle on the Aerodynamic Drag of a Bicycle

2019-10-11
2019-01-5086
While riding cycles, cyclists usually experience an aerodynamic drag force. Over the years, there has been a global effort to reduce the aerodynamic drag of a cycle. Fenders affect the aerodynamic drag of a cycle to a large extent, and fender coverage has a pronounced effect on the same. In this article, various fender coverage angles, varying from 60° to 270°, were studied to predict the aerodynamic drag with the help of a validated CFD model in SolidWorks Flow Simulation. The model was based on the Favre-Averaged Navier-Stokes (FANS) equations solved using the k-ɛ model. It was predicted that aerodynamic drag coefficient reduced fender coverage angle up to 135°, and thereafter started increasing. Analyses were carried out at velocities of 6 m/s, 8 m/s and 10 m/s and the results were found to be similar, with a minimum aerodynamic drag coefficient at 135° occurring in all the cases under study.
Technical Paper

Design, Control Surface Optimization and Stability Analysis of a Blended Wing Body Aircraft (BWB) Unmanned Aerial Vehicle

2021-03-02
2021-01-0040
Unmanned Aerial Vehicles (UAVs) are becoming an effective way to serve humanitarian relief efforts during environmental disasters. The process of designing such UAVs poses challenges in optimizing design variables such as maneuverability, payload capacity and maximizing endurance because the designing of a BWB takes into account the interdependency between the stability and aerodynamic performance. The Blended Wing Body is an unconventional aircraft configuration which offers enhanced performance over conventional UAVs. In this study the designing of a BWB is investigated with an aim to achieve structurally sound and aerodynamically stable configuration. The design has been done by taking into consideration the side and top view airfoil for fuselage, because fuselage is a major lift generating portion in the UAV. For designing the control surfaces, the two major requirements for a controlled and safe flight of a UAV are its stability and maneuverability.
Technical Paper

Computational Analysis of Flap Camber and Ground Clearance in Double-Element Inverted Airfoils

2019-06-11
2019-01-5065
Drag and lift are the primary aerodynamic forces experienced by automobiles. In competitive automotive racing, the design of inverted wings has been the subject of much research aimed at improving the performance of vehicles. In this direction, the aerodynamic impact of change in maximum camber of the flap element and ground effect in a double-element inverted airfoil was studied. The National Advisory Committee for Aeronautics (NACA) 4412 airfoil was taken as the constant main element. The camber of the flap element was varied from 0% to 9%, while ground clearance was varied from 0.1c to 1.0c. A two-dimensional (2D) Computational Fluid Dynamics (CFD) study was performed using the realizable k-ε turbulence model in ANSYS Fluent 18.2 to analyze the aerodynamic characteristics of the airfoil. Parameters such as drag coefficient, lift coefficient, pressure distribution, and wake flow field were investigated to present the optimum airfoil configuration for high downforce and low drag.
X