Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Non-Intrusive Engine Speed Sensor

2007-04-16
2007-01-0960
In the field of vehicle diagnostics accurate instantaneous engine speed information enables the detection and diagnosis of many engine problems, even subtle ones. Currently, there is a limited choice in the ways of obtaining such information. For example, it is known that one can tap into the crank sensor wiring, or use a separate, intrusive method, such as mounting a sensor in the bell housing to sense the rotation of the ring gear. However, the shortcomings of these approaches are locating and gaining access to the crank sensor connector, the location of which varies from vehicle to vehicle. Thus, authors proposed a novel, robust and manufacturing friendly speed sensor. The concept is based on the Villari effect. The sensor, which is attached to the front end of the engine crankshaft, consists of a coil of magnetostrictive wire supplied with AC current. During engine rotation the magnetostrictive wire become stressed due to centrifugal force.
Technical Paper

A Vehicle-to-Vehicle Communication Database for Infrastructureless Routing

2008-04-14
2008-01-1254
Traffic engineers use time-of-day travel time databases to characterize normal travel times on roads. This information is used by traffic management centers together with information from sensors in the highway to identify problems and to make alternate route recommendations. In this paper, the travel time database concept is extended to a vehicle-to-vehicle communications network for traffic and safety information, wherein the travel time database is generated and stored by vehicles in the network, and used by the vehicles to identify abnormal traffic conditions. This infrastructure-free approach is attractive due to the potential to eliminate highway sensor and sensor maintenance costs, which are major factors that limit the growth of traffic information beyond major roadways in urban regions. Initial work indicates that database storage requirements in the vehicle should be manageable.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit

2004-03-08
2004-01-1586
Modern military ground vehicles are dependent not only on armor and munitions, but also on their electronic equipment. Advances in battlefield sensing, targeting, and communications devices have resulted in military vehicles with a wide array of electrical and electronic loads requiring power. These vehicles are typically designed to supply this power via a main internal combustion engine outfitted with a generator. Batteries are also incorporated to allow power to be supplied for a limited time when the engine is off. It is desirable to use a subset of the battlefield electronics in the vehicle while the engine is off, in a mode called “silent watch.” Operating time in this mode is limited, however, by battery capacity unless an auxiliary power unit (APU) is used or the main engines are restarted.
Technical Paper

Low Volatility Fuel Delivery Control during Cold Engine Starts

2005-04-11
2005-01-0639
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
Technical Paper

Comparison of Load Distributions between Human Occupants and ATDs in Normal and Non-normal Occupant Positions and Postures

2006-04-03
2006-01-1435
In occupant sensing system development, the Anthropomorphic Test Dummy (ATD) and the Occupant Classification ATD (OCATD) are frequently used to simulate live human subjects in the testing and validation of weight based occupant sensing systems. A study was conducted to investigate the range of loading differences between these ATDs and live human subjects over various seating postures and conditions. The results of the study revealed that differences in seat load patterns could be significant, even though both the ATD and live humans are in the same weight and body size categories. Seat loading was measured using Hybrid III (5th percentile female, 50th percentile male, and 3 year old) ATDs, OCATDs (OCATD5 - 5th percentile female, and OCATD6 - 6 yr old child), and a CRABI (12-month old) dummy. Human subjects in the same weight and height categories as the above listed ATDs were also measured.
Technical Paper

Case Study of Vehicle Maneuvers Leading to Rollovers: Need for a Vehicle Test Simulating Off-Road Excursions, Recovery and Handling

2003-03-03
2003-01-0169
Rollovers are an important vehicle safety issue. Various technologies have been developed to help prevent rollovers from occurring, but the evaluation of rollover resistance typically involves vehicle-handling tests that are conducted on flat road surfaces with a uniform or split coefficient of friction. The purpose of this study is to determine the precipitating events leading to rollovers by analyzing real-world rollover crashes. This is a first step in identifying and developing vehicle tests that are representative of the principal driving scenarios leading to rollovers. The sequence of events leading to rollovers was determined from 63 in-depth investigated cases in the NASS-CDS database from 1995-1999. The sequence was evaluated by vehicle maneuvers, vehicle stability, surface type, road and shoulder transition condition, posted and estimated speeds, vehicle type and driver injury severity.
Technical Paper

Improving the Reliability of Squeak & Rattle Test

2005-05-16
2005-01-2539
The laboratory test method commonly known as “random vibration” is almost always used for Squeak & Rattle testing in today's automotive applications due to its obvious advantages: the convenience in simulating the real road input, the relatively low cost, and efficiency in obtaining the desired test results. Typically, Loudness N10 is used to evaluate the Squeak & Rattle (S&R) performance. However, due to the nature of random distribution of the excitation input, the repeatability of the loudness N10 measurements may vary significantly. This variation imposes a significant challenge when one is searching for a fine design improvement solution in minimizing S&R noise, such as a six-sigma study. This study intends to investigate (1) the range of the variations of random vibration control method as an excitation input with a given PSD, (2) the possibility of using an alternate control method (“time-history replication”) to produce the vibration of a given PSD for a S&R evaluation.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
X