Refine Your Search

Topic

Search Results

Video

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-12-05
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. Presenter Chinmaya Patil, Eaton Corporation
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

NOx Performance of an LNT+SCR System Designed to Meet EPA 2010 Emissions: Results of Engine Dynamometer Emission Tests

2008-10-07
2008-01-2642
The paper covers the NOx performance evaluation of an LNT + SCR system designed to meet the 2010 on-highway heavy-duty (HD) US EPA emission standards. The system combines a fuel reformer catalyst (REF), lean NOx trap (LNT), diesel particulate filter (DPF), and selective catalytic reduction (SCR) in series, to reduce engine-out NOx and PM. System NOx reduction performance was verified in an engine dynamometer test cell, using a 2007 7.6L medium-duty engine. System NOx performance was characterized using fresh LNT and SCR along with hydrothermal aged LNT and fresh SCR. Test results show levels consistent with EPA 2010 limits under various test conditions. Catalysts performance was characterized at eight steady engine-operating conditions (A100, B50, B75, A75, B100, C100, C75, C50, across a 13-mode Supplemental Emission Test (SET), and an on-highway Heavy Duty Federal Test Procedure (HD-FTP).
Journal Article

Design and Development of a Switching Roller Finger Follower for Discrete Variable Valve Lift in Gasoline Engine Applications

2012-09-10
2012-01-1639
Global environmental and economic concerns regarding increasing fuel consumption and greenhouse gas emission are driving changes to legislative regulations and consumer demand. As regulations become more stringent, advanced engine technologies must be developed and implemented to realize desired benefits. Discrete variable valve lift technology is a targeted means to achieve improved fuel economy in gasoline engines. By limiting intake air flow with an engine valve, as opposed to standard throttling, road-load pumping losses are reduced resulting in improved fuel economy. This paper focuses on the design and development of a switching roller finger follower system which enables two mode discrete variable valve lift on end pivot roller finger follower valvetrains. The system configuration presented includes a four-cylinder passenger car engine with an electro-hydraulic oil control valve, dual feed hydraulic lash adjuster, and switching roller finger follower.
Technical Paper

Simulation and Experimental Study of Torque Vectoring on Vehicle Handling and Stability

2009-12-13
2009-28-0062
This paper discusses the effect of torque vectoring differential on improving vehicle handling and stability performance. The torque vectoring concept has been analyzed. The vehicle discussed in this paper is an AWD vehicle with torque vectoring differential in the rear and a torque biasing center differential. First, simulation results with vehicle model in CarSim® and torque vectoring control algorithm in Matlab®/Simulink® is discussed. Then, experimental results for vehicle tested at winter and summer test facility is presented. Both simulation and experimental results demonstrate the effectiveness of torque vectoring differential on vehicle handling & stability.
Technical Paper

On-board Measurements of City Buses with Hybrid Electric Powertrain, Conventional Diesel and LPG Engines

2009-11-02
2009-01-2719
On-board measurements of fuel consumption and vehicle exhaust emissions of NOx, HC, CO, CO2, and PM are being conducted for three types of commercially available city buses in Guangzhou, China. The selected vehicles for this test include a diesel bus with Eaton hybrid electric powertrain, a conventional diesel bus with automated mechanical transmission (AMT), and a LPG powered city bus with manual transmission (MT). All of the tested vehicles were instrumented with on-board measurements. Horiba OBS-2200 was used for measuring NOx, HC, and CO emissions; ELPI (Electrical Low Pressure Impactor) was used for PM measurement. The vehicles were tested at Hainan National Proving Ground in southern China. Test data of fuel consumption and exhaust emissions were analyzed. The city bus with Eaton hybrid electric powertrain demonstrated more than 27% fuel consumption reduction over the conventional diesel powered bus, and over 68% over the LPG bus.
Technical Paper

Hardware-In-the-Loop (HIL) Modeling and Simulation for Diesel Aftertreatment Controls Devlopment

2009-10-06
2009-01-2928
This paper addresses Hardware-In-the-Loop modeling and simulation for Diesel aftertreatment controls system development. Lean NOx Trap (LNT) based aftertreatment system is an efficient way to reduce NOx emission from diesel engines. From control system perspective, the main challenge in aftertreatment system is to predict temperature at various locations and estimate the stored NOx in LNT. Accurate estimation of temperatures and NOx stored in the LNT will result in an efficient system control with less fuel penalty while still maintaining the emission requirements. The optimization of the controls will prolong the lifespan of the system by avoiding overheating the catalysts, and slow the progressive process of component aging. Under real world conditions, it is quite difficult and costly to test the performance of a such complex controller by using only vehicle tests and engine cells.
Technical Paper

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

2003-11-10
2003-01-3369
The power management control system development and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model-based approach, and is based on the dynamic programming technique. A vehicle model is first developed, and the optimal control actions to maximize fuel economy are then obtained by the dynamic programming method. A near-optimal control strategy is subsequently extracted and implemented using a rapid-prototyping control development system, which provides a convenient environment to adjust the control algorithms and accommodate various I/O configurations. Dynamometer-testing results confirm that the proposed algorithm helps the prototype hybrid truck to achieve a 45% fuel economy improvement on the benchmark (non-hybrid) vehicle. It also compares favorably to a conventional rule-based control method, which only achieves a 31% fuel economy improvement on the same hybrid vehicle.
Technical Paper

Vehicle Dynamometer for Hybrid Truck Development

2002-11-18
2002-01-3129
A special vehicle dynamometer has been developed that allows engineers to evaluate driveline components and control algorithms for advanced, electrically-assisted drive systems on commercial vehicles. This dynamometer allows objective measurements of performance, fuel economy, and exhaust emissions, while the full vehicle is operated over a specified driving cycle. This system can be used to exercise the electric motor, engine, transmission and battery systems on Medium Duty Hybrid Trucks - in regeneration as well as power mode - all indoors and in a controlled, repeatable environment. This paper will provide descriptions of the operating goals, control features, and results of testing with this dynamometer. Once the various parameters have been optimized for fuel and emissions performance in this facility, the vehicle can be evaluated where it counts - on the road.
Technical Paper

In-Duct Acoustic Source Data for Roots Blowers

2017-06-05
2017-01-1792
Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

2018-04-03
2018-01-0382
The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Downspeeding and Supercharging a Diesel Passenger Car for Increased Fuel Economy

2012-04-16
2012-01-0704
The effects of downspeeding and supercharging a passenger car diesel engine were studied through laboratory investigation and vehicle simulation. Changes in the engine operating range, transmission gearing, and shift schedule resulted in improved fuel consumption relative to the baseline turbocharged vehicle while maintaining performance and drivability metrics. A shift schedule optimization technique resulted in fuel economy gains of up to 12% along with a corresponding reduction in transmission shift frequency of up to 55% relative to the baseline turbocharged configuration. First gear acceleration, top gear passing, and 0-60 mph acceleration of the baseline turbocharged vehicle were retained for the downsped supercharged configuration.
Technical Paper

Modeling and Sensorless Estimation for Single Spring Solenoids

2006-04-03
2006-01-1678
This paper presents an empirical dynamic model of a single spring electromagnetic solenoid actuator system, including bounce, temperature effects and coil leakage inductance. The model neglects hysteresis and saturation, the aim being to compensate for these uncertainties through estimator robustness. The model is validated for all regions of operation and there is a good agreement between model and experimental data. A nonlinear (sliding mode) estimator is developed to estimate position and speed from current measurements. Since the estimator makes use of only current measurement it is given the name sensorless. The estimator is validated in simulation and experimentally. The novelty in this paper lies in the fact that accurate state estimation can be realized on a simple linear model using a robust observer theory. Also, the formulations for leakage inductance and coil temperature are unique.
Technical Paper

Maximizing Electronic Control Unit (ECU) Reliability

1989-09-01
891889
In an effort to improve the reliability of electronic control modules used to automate operation of trucks, a database was conceived to aid in the proper selection of electronic components. An accompanying application program provided a means of information exchange between the user and the database, while controlling (accessing, updating, and navigating through) the database.
Technical Paper

Internet-based Vehicle Communication Network

2000-12-04
2000-01-3503
A number of different data networks have been implemented for electronic control unit communication in vehicles to date. Each network serves a particular need, such as low-cost networking of cab components or high-speed networking of powertrain components. Although each communication network performs its original purpose, the different communication networks, especially those using hardware-based messaging protocols, are expensive to integrate for information sharing and are not readily upgradeable with new messages. This is complicated by the growing number of different communication networks for vehicles, often driven by OEM and supplier technology consortiums rather than by end-user requirements. The result is added vehicle-support costs for the OEM, dealership and customer to maintain multiple networks.
Technical Paper

Fast Diesel Aftertreatment Heat-up Using CDA and an Electrical Heater

2021-04-06
2021-01-0211
Commercial vehicles require fast aftertreatment heat-up in order to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations. Today’s diesel aftertreatment systems require on the order of 10 minutes to heat up during a cold FTP cycle. The focus of this paper is to heat up the aftertreatment system as quickly as possible during cold starts and maintain a high temperature during low load, while minimizing fuel consumption. A system solution is demonstrated using a heavy-duty diesel engine with an end-of-life aged aftertreatment system targeted for 2027 emission levels using various levels of controls. The baseline layer of controls includes cylinder deactivation to raise the exhaust temperature more than 100° C in combination with elevated idle speed to increase the mass flowrate through the aftertreatment system. The combination yields higher exhaust enthalpy through the aftertreatment system.
Technical Paper

Systems Engineering – A Key Approach to Transportation Electrification

2024-01-16
2024-26-0128
The automotive industry has seen accelerating demand for electrified transportation. While the complexity of conventional ICE vehicles has increased, the powertrain still largely consists of a mechanical system. In contrast, vehicle architectures in electrified transportation are a complex integration of power electronics, batteries, control units, and software. This shift in system architecture impacts the entire organization during new product development, with increased focus on high power electronic components, energy management strategies, and complex algorithm development. Additionally, product development impact extends beyond the vehicle and impacts charging networks, electrical infrastructure, and communication protocols. The complex interaction between systems has a significant impact on vehicle safety, development timeline, scope, and cost.
Technical Paper

System Level Modelling, Evaluation, and Trade-Off/Optimization of Solid-State & Hybrid DC Circuit Breakers for an EV Eco-System Using AI/ML in an MBSE Framework

2024-04-09
2024-01-2657
With the increasing demand for efficient & clean transport solutions, applications such as road transport vehicles, aerospace and marine are seeing a rise in electrification at a significant rate. Irrespective of industries, the main source of power that enables electrification in mobility applications like electric vehicles (EV), electric ships and electrical vertical take-off & landing (e-VTOL) is primarily a battery making it fundamentally a DC system. Fast charging solutions for EVs & e-VTOLs are also found to be DC in nature because of several advantages like ease of integration, higher efficiency, etc. Likewise, the key drivers of the electric grid are resulting in an energy transition towards renewable sources, that are also essentially DC in nature. Overall, these different business trends with their drivers appear to be converging towards DC power systems, making it pertinent.
X