Refine Your Search

Topic

Author

Search Results

Video

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-12-05
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. Presenter Chinmaya Patil, Eaton Corporation
Journal Article

Performance of a Fuel Reformer, LNT and SCR Aftertreatment System Following 500 LNT Desulfation Events

2009-10-06
2009-01-2835
An advanced exhaust aftertreatment system is characterized following end-of-life catalyst aging to meet final Tier 4 off-highway emission requirements. This system consists of a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst. The fuel reformer is used to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia (NH3) is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses system durability as the catalysts were aged to 500 desulfation events using an off-highway diesel engine.
Journal Article

Aftertreatment System Performance of a Fuel Reformer, LNT and SCR System Meeting EPA 2010 Emissions Standards on a Heavy-Duty Vehicle

2010-10-05
2010-01-1942
Diesel exhaust aftertreatment systems are required for meeting both EPA 2010 and final Tier 4 emission regulations. This paper addresses aftertreatment system performance of a fuel reformer, lean NOx trap (LNT) and selective catalytic reduction (SCR) system designed to meet the EPA 2010 emission standards for an on-highway heavy-duty vehicle. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel reformer, LNT, diesel particulate filter (DPF), and SCR for meeting NOx and particulate emissions. System performance was characterized in an engine dynamometer test cell, using a development, 13L, heavy-duty engine. The catalyst performance was evaluated using degreened catalysts. Test results show that system performance met the EPA 2010 emission standards under a range of test conditions that were reflective of actual vehicle operation.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Valve Guide for High Temperature Applications

2008-04-14
2008-01-1110
Sintered valve guides are increasingly used in various engine applications due to their superior durability and cost. Typical valve guide materials are low alloyed materials of the type Fe-Cu-C. More severe applications may require higher alloying content. One such application is EGR where the exhaust temperatures are much higher as compared to the conventional automotive valve guide. A new material was developed to work in this harsh environment. The object of this paper is to report development of this material including material properties and durability test results.
Journal Article

Transient On-Road Emission Reduction of an LNT + SCR Aftertreatment System

2008-10-07
2008-01-2641
An LNT + SCR diesel aftertreatment system was developed in order to meet the 2010 US HD EPA on-road, and tier 4 US HD EPA off-road emission standards. This system consists of a fuel reformer (REF), lean NOx trap (LNT), catalyzed diesel particulate filter (DPF), and selective catalytic reduction (SCR) catalyst arranged in series to reduce tailpipe nitrogen oxides (NOx) and particulate matter (PM). This system utilizes a REF to produce hydrogen (H2), carbon monoxide (CO) and heat to regenerate the LNT, desulfate the LNT, and actively regenerate the DPF. The NOx stored on the LNT is reduced by the H2 and CO generated in the REF converting it to nitrogen (N2) and ammonia (NH3). NH3, which is normally an undesired byproduct of LNT regeneration, is stored in the downstream SCR which is utilized to further reduce NOx that passes through the LNT. Engine exhaust PM is filtered and trapped by the DPF reducing the tailpipe PM emissions.
Journal Article

NOx Performance of an LNT+SCR System Designed to Meet EPA 2010 Emissions: Results of Engine Dynamometer Emission Tests

2008-10-07
2008-01-2642
The paper covers the NOx performance evaluation of an LNT + SCR system designed to meet the 2010 on-highway heavy-duty (HD) US EPA emission standards. The system combines a fuel reformer catalyst (REF), lean NOx trap (LNT), diesel particulate filter (DPF), and selective catalytic reduction (SCR) in series, to reduce engine-out NOx and PM. System NOx reduction performance was verified in an engine dynamometer test cell, using a 2007 7.6L medium-duty engine. System NOx performance was characterized using fresh LNT and SCR along with hydrothermal aged LNT and fresh SCR. Test results show levels consistent with EPA 2010 limits under various test conditions. Catalysts performance was characterized at eight steady engine-operating conditions (A100, B50, B75, A75, B100, C100, C75, C50, across a 13-mode Supplemental Emission Test (SET), and an on-highway Heavy Duty Federal Test Procedure (HD-FTP).
Journal Article

Design and Development of a Switching Roller Finger Follower for Discrete Variable Valve Lift in Gasoline Engine Applications

2012-09-10
2012-01-1639
Global environmental and economic concerns regarding increasing fuel consumption and greenhouse gas emission are driving changes to legislative regulations and consumer demand. As regulations become more stringent, advanced engine technologies must be developed and implemented to realize desired benefits. Discrete variable valve lift technology is a targeted means to achieve improved fuel economy in gasoline engines. By limiting intake air flow with an engine valve, as opposed to standard throttling, road-load pumping losses are reduced resulting in improved fuel economy. This paper focuses on the design and development of a switching roller finger follower system which enables two mode discrete variable valve lift on end pivot roller finger follower valvetrains. The system configuration presented includes a four-cylinder passenger car engine with an electro-hydraulic oil control valve, dual feed hydraulic lash adjuster, and switching roller finger follower.
Technical Paper

Gear Design for Low Whine Noise in a Supercharger Application

2007-05-15
2007-01-2293
Supercharger gear whine noise has been a NVH concern for many years, especially around idle rpm. The engine masking noise is very low at idle and the supercharger is sensitive to transmitted gear whine noise from the timing gears. The low loads and desire to use spur gears for ease in timing the rotors have caused the need to make very accurate profiles for minimizing gear whine noise. Over the past several years there has been an effort to better understand gear whine noise source and transmission path. Based on understanding the shaft bending mode frequencies and better gear design optimization tools, the gear design was modified to increase the number of teeth in order to move out of the frequency range of the shaft bending modes at idle speed and to lower the transmission error of the gear design through optimization using the RMC (Run Many Cases) software from the OSU gear laboratory.
Technical Paper

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-06-23
2008-01-1541
An advanced exhaust aftertreatment system is being developed using a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalyst arranged in series for both on- and off- highway diesel engines to meet the upcoming emissions regulations. This system utilizes a fuel reformer to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses LNT and SCR catalyst degradation as these were subjected to 150 desulfation events using a pre-production 2007 medium heavy-duty, on-highway diesel engine.
Technical Paper

On-board Measurements of City Buses with Hybrid Electric Powertrain, Conventional Diesel and LPG Engines

2009-11-02
2009-01-2719
On-board measurements of fuel consumption and vehicle exhaust emissions of NOx, HC, CO, CO2, and PM are being conducted for three types of commercially available city buses in Guangzhou, China. The selected vehicles for this test include a diesel bus with Eaton hybrid electric powertrain, a conventional diesel bus with automated mechanical transmission (AMT), and a LPG powered city bus with manual transmission (MT). All of the tested vehicles were instrumented with on-board measurements. Horiba OBS-2200 was used for measuring NOx, HC, and CO emissions; ELPI (Electrical Low Pressure Impactor) was used for PM measurement. The vehicles were tested at Hainan National Proving Ground in southern China. Test data of fuel consumption and exhaust emissions were analyzed. The city bus with Eaton hybrid electric powertrain demonstrated more than 27% fuel consumption reduction over the conventional diesel powered bus, and over 68% over the LPG bus.
Technical Paper

Hardware-In-the-Loop (HIL) Modeling and Simulation for Diesel Aftertreatment Controls Devlopment

2009-10-06
2009-01-2928
This paper addresses Hardware-In-the-Loop modeling and simulation for Diesel aftertreatment controls system development. Lean NOx Trap (LNT) based aftertreatment system is an efficient way to reduce NOx emission from diesel engines. From control system perspective, the main challenge in aftertreatment system is to predict temperature at various locations and estimate the stored NOx in LNT. Accurate estimation of temperatures and NOx stored in the LNT will result in an efficient system control with less fuel penalty while still maintaining the emission requirements. The optimization of the controls will prolong the lifespan of the system by avoiding overheating the catalysts, and slow the progressive process of component aging. Under real world conditions, it is quite difficult and costly to test the performance of a such complex controller by using only vehicle tests and engine cells.
Technical Paper

Preliminary Numerical Analysis of Valve Fatigue in a Checkball Pump for Driveline Applications

2010-10-05
2010-01-2008
Recent studies have shown that hydraulic hybrid drivelines can significantly improve fuel savings for medium weight vehicles on stop-start drive cycles. In a series hydraulic hybrid (SHH) architecture, the conventional mechanical driveline is replaced with a hydraulic driveline that decouples vehicle speed from engine speed. In an effort to increase the design space, this paper explores the use of a fixed displacement checkball piston pump in an SHH driveline. This paper identifies the potential life-limiting components of a fixed displacement checkball piston pump and examines the likelihood of surface fatigue in the check valves themselves. Numerical analysis in ABAQUS software suggests that under worst case operating conditions, cyclic pressure loading will result in low-cycle plastic deformation of check valve surfaces.
Technical Paper

Simulation of an Engine Valve Stress/Strain Response During a Closing Event

2003-03-03
2003-01-0727
Using an implicit transient FEA models of an intake engine valve, the dynamic stress/strain response of a valve closing (impact) on the valve seat was simulated. Key dynamic events during the closing process were identified and their corresponding physics accounted for in the model including: valve seat contact, valve tilt, rocker arm separation, material properties, shock wave and stem seal damping. Empirical tests were conducted to characterize the stem seal damping as a function of valve stem velocity. In addition, a simplified dynamics equation approach was developed. The results were successfully correlated to recorded strain gauge data.
Technical Paper

Fatigue Analysis Methodology for Predicting Engine Valve Life

2003-03-03
2003-01-0726
Using FEM (Finite Element Method) and other analytical approaches, a systematic methodology was developed to predict an engine valve's fatigue life. In this study, a steel (SAE 21-2N) exhaust valve on an engine with a type 2 valve train configuration was used as a test case. Temperature and stress/strain responses of each major event phase of the engine cycle were analytically simulated. CFD models were developed to simulate the exhaust gas flow to generate boundary conditions for a thermal model of the valve. FEM simulations accounted for thermal loads, temperature dependent material properties, thermal stresses, closing impact stresses and combustion load stresses. An estimated fatigue life was calculated using Miner's rule of damage accumulation in conjunction with the Modified Goodman approach for fluctuating stresses. Predicted life results correlated very well with empirical tests.
Technical Paper

Gear Transmission Error Metric for Use with Gear Inspection Machine

2003-05-05
2003-01-1663
The spur timing gears in Eaton superchargers operate at low torque loads and the supercharger system is especially sensitive to gear whine noise created by minute differences in the spur gear tooth profile quality. This has necessitated the grinding of very high quality profiles on high-contact-ratio spur gears. The manufacturing operation has used subjective evaluation of profile and lead measurements to qualify grinder diamonds and audit gear quality related to noise. They have also relied on supercharger end-of-line-testers to provide a direct measurement of gear noise as the primary quality feedback to the gear manufacturing process. Since the difference in the inspection plots of very high quality profiles is difficult to determine subjectively, the inspection process assessments have been difficult to correlate to the resultant gear noise measurements.
Technical Paper

Final Tier 4 Emission Solution Using An Aftertreatment System With A Fuel Reformer, LNT, DPF And Optional SCR

2011-09-13
2011-01-2197
Diesel exhaust aftertreatment systems are required for meeting Final Tier 4 emission regulations. This paper addresses an aftertreatment system designed to meet the Final Tier 4 emission standards for nonroad vehicle markets. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel vaporizer, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and an optional selective catalytic reduction (SCR) catalyst. Aftertreatment system performance, both with and without the SCR, was characterized in an engine dynamometer test cell, using a 4.5 liter, pre-production diesel engine. The engine out NOx nominally ranged between 1.6 and 2.0 g/kW-hr while all operating modes ranged between 1.2 and 2.8 g/kW-hr. The engine out particulate matter was calibrated to approximately 0.1 g/kW-hr for various power ratings. Three engine power ratings of 104 kW, 85 kW and 78 kW were evaluated.
Technical Paper

In-Duct Acoustic Source Data for Roots Blowers

2017-06-05
2017-01-1792
Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

2018-04-03
2018-01-0382
The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
X