Refine Your Search

Topic

Search Results

Video

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-12-05
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. Presenter Chinmaya Patil, Eaton Corporation
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Adoption Patterns for Precision Agriculture

1998-09-14
982041
Early experience with precision farming technology suggests that some hardware and software may follow a rapid S curve adoption path, but that the use of integrated precision farming systems may take longer to develop and be subject to false starts and periods of stagnation. Yield monitors appear to be following a classic S curve adoption path. Precision farming adoption is like that of hybrid corn because changes in organizations will be required to use it effectively. It is like motorized mechanization because it is coming on the market in an immature form and lends itself to farmer tinkering.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-06-15
2009-01-1772
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

Hydraulic Hybrid Vehicle Energy Management System

2009-10-06
2009-01-2834
Eaton has developed a prototype hydraulic hybrid vehicle energy management system that substantially improves fuel economy and reduces harmful emissions. The system was developed cooperatively with the U.S. Environmental Protection Agency (EPA), Navistar Inc., and the U.S. Army. The system has demonstrated fuel economy improvements in real world use of up to 50 percent while simultaneously reducing carbon emissions by up to 30 percent. The first real world application of the technology will be in parcel delivery vehicles owned by United Parcel Service (UPS). The hybrid vehicle energy management system components will be described and principles of operation explained. Major properties of the system will be examined and it will be shown why the hydraulic hybrid system is well suited for the parcel delivery vehicle application. Several secondary beneficial properties of the system will also be discussed.
Technical Paper

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

2003-11-10
2003-01-3369
The power management control system development and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model-based approach, and is based on the dynamic programming technique. A vehicle model is first developed, and the optimal control actions to maximize fuel economy are then obtained by the dynamic programming method. A near-optimal control strategy is subsequently extracted and implemented using a rapid-prototyping control development system, which provides a convenient environment to adjust the control algorithms and accommodate various I/O configurations. Dynamometer-testing results confirm that the proposed algorithm helps the prototype hybrid truck to achieve a 45% fuel economy improvement on the benchmark (non-hybrid) vehicle. It also compares favorably to a conventional rule-based control method, which only achieves a 31% fuel economy improvement on the same hybrid vehicle.
Technical Paper

A New Composite Drive Cycle for Heavy-Duty Hybrid Electric Class 4-6 Vehicles

2004-03-08
2004-01-1052
This paper presents a new composite drive cycle used to evaluate and test the performance of Class 4-6 heavy-duty hybrid electric vehicles (HEVs). The new cycle is being used in the ongoing Advanced Heavy Hybrid Propulsion Systems (AHHPS) Program, sponsored by the U.S. Department of Energy. The goal was to select a cycle that is acceptable to all involved parties, has an achievable speed-time trace for target applications, represents the typical driving pattern of these applications, and is practical for testing and state-of-charge correction. These criteria were applied to numerous element and composite cycles. Ultimately, a new composite cycle was developed and selected-the Combined International Local and Commuter Cycle (CILCC). Various activities conducted under the AHHPS Program are based on this cycle, including energy auditing, modeling and simulation, system optimization, and vehicle testing.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

2002-10-29
2002-01-3182
Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
Technical Paper

Vehicle Dynamometer for Hybrid Truck Development

2002-11-18
2002-01-3129
A special vehicle dynamometer has been developed that allows engineers to evaluate driveline components and control algorithms for advanced, electrically-assisted drive systems on commercial vehicles. This dynamometer allows objective measurements of performance, fuel economy, and exhaust emissions, while the full vehicle is operated over a specified driving cycle. This system can be used to exercise the electric motor, engine, transmission and battery systems on Medium Duty Hybrid Trucks - in regeneration as well as power mode - all indoors and in a controlled, repeatable environment. This paper will provide descriptions of the operating goals, control features, and results of testing with this dynamometer. Once the various parameters have been optimized for fuel and emissions performance in this facility, the vehicle can be evaluated where it counts - on the road.
Technical Paper

Case Study of an Electric-Hydraulic Hybrid Propulsion System for a Heavy Duty Electric Vehicle

2016-09-27
2016-01-8112
In order to improve efficiency and increase the operation of electric vehicles, assistive energy regeneration systems can be used. A hydraulic energy recovery system is modeled to be used as a regenerative system for supplementing energy storage for a pure electric articulated passenger bus. In this study a pump/motor machine is modeled to transform kinetic energy into hydraulic energy during braking, to move the hydraulic fluid from the low pressure reservoir to the hydraulic accumulator. The simulation of the proposed system was used to estimate battery savings. It was found that on average, approximately 39% of the battery charge can be saved when using a real bus driving cycle.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

2018-04-03
2018-01-0382
The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
Technical Paper

Development of a Torque-Based Control Strategy for a Mode-Switching Hydraulic Hybrid Passenger Vehicle

2018-04-03
2018-01-1007
An increase in the number of vehicles per capita coupled with stricter emission regulations have made the development of newer and better hybrid vehicle architectures indispensable. Although electric hybrids have more visibility and are now commercially available, hydraulic hybrids, with their higher power densities and cheaper components, have been rigorously explored as the alternative. Several architectures have been proposed and implemented for both on and off highway applications. The most commonly used architecture is the series hybrid, which requires an energy conversion from the primary source (engine) to the secondary domain. From he re, the power flows either into the secondary source (high-pressure accumulator) or to the wheels depending upon the state of charge of the accumulator. A mode-switching hydraulic hybrid, which is a combination of a hydrostatic transmission and a series hybrid, was recently developed in the author’s research group.
Technical Paper

Designing a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1763
The Purdue University EcoMakers team has completed its first year of the EcoCAR 2 Competition, in which the team has designed a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle that meets the performance requirements of a mid-size sedan for the US market, maintaining capability, utility and consumer satisfaction while minimizing emissions, energy consumption and petroleum use. The team is utilizing a 1.7L 14 CI engine utilizing B20 (20% biodiesel, 80% diesel), a 16.2 kW-hr A123 battery pack, and a Magna E-Drive motor to power the front and rear wheels. This will allow the vehicle to have a charge-depleting range of 75 miles. The first year was focused on the simulation of the vehicle, in which the team completed the controls, packaging and integration, and electrical plans for the vehicle to be used and implemented in years two and three of the competition.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Microprocessor Based Electrohydraulic Control For Car Haulers

1988-09-01
881278
Car hauler ramps have historically been hydraulically positioned via banks of manual control valves that provide limited operator visibility and flexibility. On some enclosed type haulers, manual valves are not feasible. An electro-hydraulic system has been developed utilizing on/off solenoid valve stacks. A handheld control unit with a membrane switch pad communicates with a valve interface module near each valve stack. The handheld unit and the interface modules each have microprocessor circuitry to provide intelligent distributed control. Self monitoring circuitry provides safety features and system diagnostics. Wiring harness assemblies connect the valve stacks to the interface modules. A retractile cable from the handheld unit to the trailer allows improved operator mobility and visibility. An infrared wireless interface between the trailer and handheld unit will also be available.
Technical Paper

Multi-Objective Bayesian Optimization of Lithium-Ion Battery Cells

2022-03-29
2022-01-0703
In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. A LIB is composed of several unit cells. Therefore, one of the most important factors that determine the performance of a LIB are the characteristics of the unit cell. The design of LIB cells is a challenging problem since it involves the evaluation of expensive black-box functions. These functions lack a closed-form expression and require long-running time simulations or expensive physical experiments for their evaluation. Recently, Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition function that guides the optimization.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

2021-04-06
2021-01-0348
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
Technical Paper

Bayesian Optimization of Active Materials for Lithium-Ion Batteries

2021-04-06
2021-01-0765
The design of better active materials for lithium-ion batteries (LIBs) is crucial to satisfy the increasing demand of high performance batteries for portable electronics and electric vehicles. Currently, the development of new active materials is driven by physical experimentation and the designer’s intuition and expertise. During the development process, the designer interprets the experimental data to decide the next composition of the active material to be tested. After several trial-and-error iterations of data analysis and testing, promising active materials are discovered but after long development times (months or even years) and the evaluation of a large number of experiments. Bayesian global optimization (BGO) is an appealing alternative for the design of active materials for LIBs. BGO is a gradient-free optimization methodology to solve design problems that involve expensive black-box functions. An example of a black-box function is the prediction of the cycle life of LIBs.
X