Refine Your Search

Topic

Author

Search Results

Journal Article

Performance of a Fuel Reformer, LNT and SCR Aftertreatment System Following 500 LNT Desulfation Events

2009-10-06
2009-01-2835
An advanced exhaust aftertreatment system is characterized following end-of-life catalyst aging to meet final Tier 4 off-highway emission requirements. This system consists of a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst. The fuel reformer is used to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia (NH3) is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses system durability as the catalysts were aged to 500 desulfation events using an off-highway diesel engine.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

Modeling and Simulation of a Hydraulic Steering System

2008-10-07
2008-01-2704
Conventional hydraulic steering systems keep improving performance and driving comfort by introducing advanced features via mechanical design. The ever increasing mechanical complexity requires the advanced modeling and simulation technology to mitigate the risks in the early stage of the development process. In this paper, we focus on advanced modeling tools environment with an example of a load sensing hydraulic steering system. The complete system architecture is presented. Analytical equations are developed for a priority valve and a steering control unit as the foundation of modeling. The full version of hydraulic steering system model is developed in Dymola platform. In order to capture interaction between steering and vehicle, the co-simulation platform between the hydraulic steering system and vehicle dynamics is established by integrating Dymola, Carsim and Simulink.
Technical Paper

Gear Design for Low Whine Noise in a Supercharger Application

2007-05-15
2007-01-2293
Supercharger gear whine noise has been a NVH concern for many years, especially around idle rpm. The engine masking noise is very low at idle and the supercharger is sensitive to transmitted gear whine noise from the timing gears. The low loads and desire to use spur gears for ease in timing the rotors have caused the need to make very accurate profiles for minimizing gear whine noise. Over the past several years there has been an effort to better understand gear whine noise source and transmission path. Based on understanding the shaft bending mode frequencies and better gear design optimization tools, the gear design was modified to increase the number of teeth in order to move out of the frequency range of the shaft bending modes at idle speed and to lower the transmission error of the gear design through optimization using the RMC (Run Many Cases) software from the OSU gear laboratory.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

2007-04-16
2007-01-0783
Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

Adoption Patterns for Precision Agriculture

1998-09-14
982041
Early experience with precision farming technology suggests that some hardware and software may follow a rapid S curve adoption path, but that the use of integrated precision farming systems may take longer to develop and be subject to false starts and periods of stagnation. Yield monitors appear to be following a classic S curve adoption path. Precision farming adoption is like that of hybrid corn because changes in organizations will be required to use it effectively. It is like motorized mechanization because it is coming on the market in an immature form and lends itself to farmer tinkering.
Technical Paper

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-06-23
2008-01-1541
An advanced exhaust aftertreatment system is being developed using a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalyst arranged in series for both on- and off- highway diesel engines to meet the upcoming emissions regulations. This system utilizes a fuel reformer to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses LNT and SCR catalyst degradation as these were subjected to 150 desulfation events using a pre-production 2007 medium heavy-duty, on-highway diesel engine.
Technical Paper

Communication Skills Development: Practical Implications for a Culture of Safety in Aviation Maintenance

1998-11-09
983113
The negative consequences of unsafe behaviors on the job heavily contribute to the rising costs of doing business in terms of both organization dollars and diminished human quality of life. Developing a safety culture provides a positive proactive approach toward creating a working environment where safety is a top priority. An integral part of accomplishing this task is directly related to training individuals on how the interactions that occur among organizational members and the messages their behaviors send influence others' behaviors. This can be best addressed through communication skill development initiatives including mutual responsibility, trust, avoiding punitive strategies and facilitating assertiveness.
Technical Paper

Multi-Objective Design Optimization Using a Damage Material Model Applied to Light Weighting a Formula SAE Car Suspension Component

2009-04-20
2009-01-0348
The Mississippi State University Formula SAE race car upright was optimized using radial basis function metamodels and an internal state variable (ISV) plasticity damage material model. The weight reduction of the upright was part of a goal to reduce the weight of the vehicle by 25 percent. Using an optimization routine provided an upright design that is lighter that helps to improve vehicle fuel economy, acceleration, and handling. Finite element (FE) models of the upright were produced using quadratic tetrahedral elements. Using tetrahedral elements provided a quick way to produce the multiple FE models of the upright required for the multi-objective optimization. A design of experiments was used to determine how many simulations were required for the optimization. The loads for the simulations included braking, acceleration, and corning loads seen by the car under track conditions.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Technical Paper

Global Cooperation and Innovation: a case study about the development of the world's first application of an electronic locker differential integrated to a front transversal transmission

2008-10-07
2008-36-0195
This article aims to show how the development of innovative products within the automotive industry in Brazil has been oriented, linking technological competences construction in local poles with suppliers and headquarters cooperation. The discussion in this article is illustrated by the development and application analysis of an electronic locker differential integrated to a front transversal transmission, which is the world's first commercial application. It proposes, through a case study, a relationship between the subjects discussed in here and the new tendencies for product development within the automotive industry and also for the world's R&D flow.
Technical Paper

Simulation and Experimental Study of Torque Vectoring on Vehicle Handling and Stability

2009-12-13
2009-28-0062
This paper discusses the effect of torque vectoring differential on improving vehicle handling and stability performance. The torque vectoring concept has been analyzed. The vehicle discussed in this paper is an AWD vehicle with torque vectoring differential in the rear and a torque biasing center differential. First, simulation results with vehicle model in CarSim® and torque vectoring control algorithm in Matlab®/Simulink® is discussed. Then, experimental results for vehicle tested at winter and summer test facility is presented. Both simulation and experimental results demonstrate the effectiveness of torque vectoring differential on vehicle handling & stability.
Technical Paper

Modeling Mission Operations Trade Spaces and Lunar C3I Capabilities

2009-07-12
2009-01-2426
This paper introduces an integration-level analysis tool to provide feedback for high-level trade spaces. The Purdue University Lunar C3I Model integrates approximations of several domain-specific models to simulate for many years the effect of network and asset parameters. This paper discusses the communication, anomaly response, and autonomy simulation models in depth. Results of these models provide specific examples of integration-level figures of merit that can be useful for comparing different campaign implementations. These figures of merit are contrasted with related domain-specific figures of merit in order to demonstrate the need for higher-level system integration decisions. A final example of integration-level results and interpretation discusses the autonomy level of the Altair lunar lander.
Technical Paper

Regenerative Hydraulic Topographies using High Speed Valves

2009-10-06
2009-01-2847
This paper presents hydraulic topographies using a network of valves to achieve better energy efficiency, reliability, and performance. The Topography with Integrated Energy Recovery (TIER) system allows the valves and actuators to reconfigure so that flow from assistive loads on actuators can be used to move actuators with resistive loads. Many variations are possible, including using multiple valves with either a single pump/motor or with multiple pump/motors. When multiple pump/motors are used, units of different displacements can be chosen such that units are controlled to minimize time operating at low displacement, thus increasing overall system efficiency. Other variations include configurations allowing open loop or closed loop pump/motors to be used, the use of fixed displacement pump/motors, or the ability to store energy in an accumulator. This paper gives a system level overview and summarizes the hydraulic systems using the TIER approach.
X