Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Impact of Ambient Temperature on Gaseous and Particle Emissions from a Direct Injection Gasoline Vehicle and its Implications on Particle Filtration

2013-04-08
2013-01-0527
Gaseous and particle emissions from a gasoline direct injection (GDI) and a port fuel injection (PFI) vehicle were measured at various ambient temperatures (22°C, -7°C, -18°C). These vehicles were driven over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) on Tier 2 certification gasoline (E0) and 10% by volume ethanol (E10). Emissions were analyzed to determine the impact of ambient temperature on exhaust emissions over different driving conditions. Measurements on the GDI vehicle with a gasoline particulate filter (GPF) installed were also made to evaluate the GPF particle filtration efficiency at cold ambient temperatures. The GDI vehicle was found to have better fuel economy than the PFI vehicle at all test conditions. Reduction in ambient temperature increased the fuel consumption for both vehicles, with a much larger impact on the cold-start FTP-75 drive cycle observed than for the hot-start US06 drive cycle.
Technical Paper

Impact of Varying Biodiesel Blends on Direct-Injection Light-Duty Diesel Engine Emissions

2012-04-16
2012-01-1313
A 1.9L turbocharged direct-injection engine representing a model year 1998-2003 Volkswagen vehicle, equipped with the OEM diesel oxidation catalyst (DOC) and exhaust gas recirculation (EGR), was tested on an eddy-current engine dynamometer with a critical flow venturi-constant volume sampling system (CFV-CVS). The engine was operated over three steady-state modes: 1600 rev/min at 54 Nm; 1800 rev/min at 81 Nm; and 2000 rev/min at 98 Nm. Commercially available ultra-low sulfur diesel fuel (≺15 ppm S) was splash-blended with fatty acid methyl ester biodiesels derived from three different feedstocks: canola, soy, and tallow/waste fry oil. Test blend levels included: 0%, 2%, 5%, 20%, 50%, and 100% biodiesel for each feedstock.
X