Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Aerodynamic Comparison of Tractor-Trailer Platooning and A-Train Configuration

2015-09-29
2015-01-2897
Modern aerodynamic Class 8 freight tractors can improve vehicle freight efficiency and fuel economy versus older traditional style tractors when pulling Canadian style A- or B-Train double trailer long combination vehicles (LCV's) at highway speeds. This paper compares the aerodynamic performance of a current generation aerodynamic tractor with several freight hauling configurations through computational fluid dynamics evaluations using the Lattice-Boltzmann methodology. The configurations investigated include the tractor hauling a standard 53′ trailer, a platooning configuration with a 30′ separation distance, and an A-Train configuration including two 48′ trailers connected with a dolly converter. The study demonstrates CFD's capability of evaluating extremely long vehicle combinations that might be difficult to accomplish in traditional wind tunnels due to size limitations.
Journal Article

CFD Correlation with Wind-Tunnel for Dry Van Trailer Aerodynamic Devices

2016-09-27
2016-01-8016
The primary purpose of this paper is to correlate the CFD simulations performed using PowerFLOW, a Lattice Boltzmann based method, and wind tunnel tests performed at a wind tunnel facility on 1/8th scaled tractor-trailer models. The correlations include results using an aerodynamic-type tractor paired with several trailer configurations, including a baseline trailer without any aerodynamic devices as well as combinations of trailer side skirts and a tractor-trailer gap flow management device. CFD simulations were performed in a low blockage open road environment at full scale Reynolds number to understand how the different test environments impact total aerodynamic drag values and performance deltas between trailer aerodynamic devices. There are very limited studies with the Class-8 sleeper tractor and 53ft long trailer comparing wind tunnel test and CFD simulation with and without trailer aerodynamic device. This paper is to fill this gap.
Journal Article

Characterization of Aerodynamic Design Spaces for Adjustable Tractor Surfaces

2016-09-27
2016-01-8147
Trailer positioning plays a significant role in the overall aerodynamics of a tractor-trailer combination and varies widely depending on configuration and intended use. In order to minimize aerodynamic drag over a range of trailer positions, adjustable aerodynamic devices may be utilized. For maximum benefit, it is necessary to determine the optimal position of the aerodynamic device for each trailer position. This may be achieved by characterizing a two-dimensional design space consisting of trailer height and tractor-trailer gap length, with aerodynamic drag as the response. CFD simulations carried out using a Lattice-Boltzmann based method were coupled with modeFRONTIER for the creation of multiple Kriging Response Surfaces. Simulations were carried out in multiple phases, allowing for the generation of intermediate response surfaces to estimate predictive error and track response surface convergence.
Technical Paper

Aerodynamic Simulations of a Class 8 Heavy Truck: Comparison to Wind Tunnel Results and Investigation of Blockage Influences

2007-10-30
2007-01-4295
The accuracy of the Lattice-Boltzmann based simulation method for prediction of aerodynamic drag on a heavy truck was evaluated by comparing results to twenty percent scale model wind tunnel measurements from the University of Washington Aeronautical Laboratory (UWAL). A detailed preproduction Kenworth T2000 tractor trailer was used as the scale model. The results include a comparison of normalized drag between simulation and wind tunnel as well as percentage drag change with the addition of a radius to the rear edge of the trailer. Significant effort was involved to model all of the wind tunnel details affecting the tractor-trailer drag. These are discussed along with the results of additional simulations which were performed to study the impact of the UWAL tunnel geometry relative to a tunnel with the same blockage and constant cross-sectional area, and a case with negligible blockage.
Technical Paper

Aerodynamic Simulations of a Generic Tractor-Trailer: Validation and Analysis of Unsteady Aerodynamics

2008-10-07
2008-01-2612
Aerodynamic simulations of a 1:8-scale simplified tractor-trailer, designated as the Generic Conventional Model (GCM), were conducted using a Lattice-Boltzmann based solver. Comparisons were made to experimental measurements from the NASA Ames 12-Foot Pressure Wind Tunnel, including drag coefficients as a function of yaw, static and transient surface pressures, and three-component particle image velocimetry. The baseline model configuration was tested at yaw angles from 0 to 12 degrees, allowing the calculation of the wind-averaged drag coefficient. Results demonstrated that the simulation predicted body-axis drag within experimental uncertainty and also resolved the correct pressure distribution and flow structure in the separated flow regions including the tractor-trailer gap and trailer wake regions. The comparison of the experimental transient pressure spectra showed good agreement with the simulation results, both in magnitude and identification of dominant spectral peaks.
Journal Article

Aerodynamic Optimization of Trailer Add-On Devices Fully- and Partially-Skirted Trailer Configurations

2015-09-29
2015-01-2885
As part of the United States Department of Energy's SuperTruck program, Volvo Trucks and its partners were tasked with demonstrating 50% improvement in overall freight efficiency for a tractor-trailer, relative to a best in class 2009 model year truck. This necessitated that significant gains be made in reducing aerodynamic drag of the tractor-trailer system, so trailer side-skirts and a trailer boat-tail were employed. A Lattice-Boltzmann based simulation method was used in conjunction with a Kriging Response Surface optimization process in order to efficiently describe a design space of seven independent parameters relating to boat-tail and side-skirt dimensions, and to find an optimal configuration. Part 1 concerns a fully-skirted tractor-trailer system, and consists of an initial phase of optimization, followed by a mid-project re-evaluation of constraints, and an additional period of optimization.
X