Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Simulation of Class 8 Truck Cooling System: Comparison to Experiment under Different Engine Operation Conditions

2007-10-29
2007-01-4111
More stringent heavy vehicle emissions legislation demands considerably higher performance for engine cooling systems. This paper presents a study of cooling airflow for a Freightliner Class 8 truck. The predicted radiator coolant inlet and charge-air-cooler outlet temperatures are in very good agreement with the measured data. The under hood flow behavior is described and potential areas of improvement leading to better cooling airflow performance are highlighted. The airflow simulation approach is based on the Lattice-Boltzmann Method (LBM) and is described in detail. It is shown that the presented simulation approach can provide accurate predictions of cooling airflow and coolant temperature across different fan speeds.
Technical Paper

Under-hood Thermal Simulation of a Class 8 Truck

2007-10-30
2007-01-4280
A validation study was performed comparing the simulation results of the Lattice-Boltzmann Equation (LBE) based flow solver, PowerFLOW®, to cooling cell measurements conducted at Volvo Trucks North America (VTNA). The experimental conditions were reproduced in the simulations including dynamometer cell geometry, fully detailed under-hood, and external tractor geometry. Interactions between the air flow and heat exchangers were modeled through a coupled simulation with the 1D-tool, PowerCOOL™, to solve for engine coolant and charge air temperatures. Predicted temperatures at the entry and exit plane of the radiator and charge-air-cooler were compared to thermocouple measurements. In addition, a detailed flow analysis was performed to highlight regions of fan shroud loss and cooling airflow recirculation. This information was then used to improve cooling performance in a knowledge-based incremental design process.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Simulation of Cooling Airflow under Different Driving Conditions

2007-04-16
2007-01-0766
Presented are simulations of cooling airflow and external aerodynamics over Land Rover LR3 and Ford Mondeo cars under several driving conditions. The simulations include details of the external flow field together with the flow in the under-hood and underbody areas. Shown is the comparison between the predicted and measured coolant inlet temperature in the radiator, drag and lift coefficients, temperature distribution on the radiator front face, and wake total pressure distribution. Very good agreement is observed. In addition, shown is the complex evolution of the temperature field in the idle case with strong under-hood recirculation. It is shown that the presented Lattice-Boltzmann Method based approach can provide accurate predictions of both cooling airflow and external aerodynamics.
Technical Paper

Towards Shape Optimization of Radiator Cooling Tanks

2002-03-04
2002-01-0952
With increased demand for improvements in the efficiency and operation of all automotive engine components, including those in the engine cooling system, there is a need to develop a set of virtual tools that can aid in both the evaluation and design of automotive components. In the case of automotive radiators, improvements are needed in the overall pressure drop as well as the coolant flow homogeneity across all radiator tubes. The latter criterion is particularly important in the reduction of premature fouling and failure of heat exchangers. Rather than relying on ad hoc geometry changes with the goal of improving the performance of radiators, the coupling of CFD flow simulations with numerical shape optimization methods could assist in the design and testing of automotive heating and cooling components.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

On the Different Contributions of Flexible Elements to the Structural Noise of Refrigeration Compressors

2022-06-15
2022-01-0983
Air conditioning acoustics have become of paramount importance in electric vehicles, where noise from electromechanical components is no longer masked by the presence of the internal combustion engine. In a car HVAC systems, the coolant compressor is one of the most important sources in terms of vibration and noise generation. The paper, the generated structural noise is studied in detail on a prototype installation, and the noise transmission and propagation mechanisms are analyzed and discussed. Through ”in situ” measurements and virtual point transformation, the rotor unbalance forces and torque acting within the component are identified. The dynamic properties of the rubber mounts, installed between the compressor and its support, are identified thanks to matrix inversion methods. To assess the quality of the proposed procedure, the synthesized sound pressure level is compared with experimental SPL measurements in different operational conditions.
Technical Paper

Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry

2006-10-31
2006-01-3478
Air flow in the underhood area is the primary source of engine cooling. A quick look at the vehicle underhood reveals exceptionally complex geometry. In addition to the engine, there are fans, radiator, condenser, other heat exchangers and components. The air flow needs to have adequate access to all relevant parts that require cooling. Due to complex geometry, the task to ensure sufficient air cooling is not a simple one. The air flow entering from the front grille is affected by many components on its path through the underhood. Even small geometry details affect the flow direction and can easily cause recirculation regions which reduce the cooling efficiency. Therefore, air cooling flow analysis requires detailed treatment of the underhood geometry and at the same time accurate air flow modeling. Recent advances in the lattice-Boltzmann equation (LBE) modeling are allowing both.
Technical Paper

Further Inroads in the Shape Optimization of Radiator Tanks

2003-03-03
2003-01-0530
Improvements in the pressure drop across and flow homogeneity in the tubes of automotive radiators are needed to reduce the power demands on the vehicle water pump and increase the lifetime of the radiator. The goal of this ongoing work is to develop a set of virtual tools coupling CFD flow simulations with numerical shape optimization methods to assist in the design and testing process of automotive heating and cooling components. In SAE paper 2002-01-0952, “Towards Shape Optimization of Radiator Cooling Tanks,” the authors developed and evaluated optimization criteria for pressure drop and mass flow rate distribution in a water-to-air automotive heat exchanger. In this follow-up paper, results based on the implementation of these optimization criteria are presented. More specifically, results concerning the placement of radiator inlets and outlets are addressed.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

The Aerodynamic Development of a New Dongfeng Heavy Truck

2015-09-29
2015-01-2886
The development of a new Dongfeng Heavy truck had very strict targets for fuel consumption. As the aerodynamic drag plays a crucial role for the fuel consumption, a low drag value had to be achieved. It was therefore essential to include evaluation and optimization of the aerodynamics in the development process. Because wind tunnel facilities were not available, the complete aerodynamics development was based on digital simulation. The major portion of the aerodynamic optimization was carried out during the styling phase where mirrors, sun visor, front bumper and aero devices were optimized for drag reduction. For optimizing corner vanes and mud guards, self-soiling from the wheel spray was included in the analysis. The aero results did also show that cooling air flow rates are sufficiently high to ensure proper cooling. During the detailed engineering phase an increase of the drag above the target required further optimization work to finally reach the target.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Technical Paper

Effects of Tuner Parameters on Hydraulic Noise and Vibration

1999-05-17
1999-01-1776
Passengers' frequent requests are for less Noise, Vibration and Harshness (NVH) in the vehicle compartment. This and the reduction of noise and vibration levels from major sources like the engine necessitate better performance of other sources of noise and vibrations in a vehicle. Some of these sources are the hydraulic circuits including the power steering system. Fluid pulses or pressure ripples, generated typically by a pump, become excitation forces to the structure of a vehicle or the steering gear and represent a considerable source of discomfort to the vehicle passengers. Current power steering technology attenuates this ripple along the pressure line connecting the pump to the steering gear. Finding the optimum design configuration for the components (hose, tuner, tube, and others) has been a matter of experience-based trial and error. This paper is a part of a program to simulate and optimize fluid borne noise in hydraulic circuits.
X