Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Evaluation of Risk Trade-offs in Passenger Compartment Fire Retardant Usage - a Case Study

2009-04-20
2009-01-0014
The process of design inherently involves consideration of risk trade offs; intervening to reduce one risk often increases another. In addition to creating a design for the intended function of the product, a rational process of risk management involves prediction of risk through design analysis, statistical evaluation of the history of similar products, and potentially multidisciplinary teams to address diverse causes of risk. As a case study, this paper examines the benefits of using one class of fire retardant to reduce risk of vehicle fire injuries and the countervailing health risk due to increased quantities of fire retardants released in the interior environment. Data sources for fire and health risk were researched and interpreted for use in the analysis. Information needed to reduce the uncertainties in the risk predictions are identified for future refinements to the conclusions.
Technical Paper

Toward Requirements for a Web-based Icing Training Program for Flight Dispatchers

2003-06-16
2003-01-2151
The Icing Branch at NASA Glenn Research Center has funded an exploratory effort to identify requirements for developing a flight dispatcher-centered web-based icing training program that would be available for all airspace users. Through research and discussions with personnel at airlines, target areas were identified as influences on the requirements for the training system: 1 Flight dispatchers' icing related judgments and decision-making; 2 Certification, new hire and recurrent flight dispatcher training with respect to icing; 3 Icing related weather sources and the problems that flight dispatchers may have in their interpretation; 4 Pedagogical strategies (such as flight dispatcher-centered scenario-based approaches) for delivering flight dispatcher training content; and 5 Concerns/constraints with respect to web-based training for flight dispatchers.
Technical Paper

Correction of Beam Steering for Optical Measurements in Turbulent Reactive Flows

2021-04-06
2021-01-0428
The application of optical diagnostics in turbulent reactive flows often suffers from the beam steering (BS) effects, resulting in degraded image quality and/or measurement accuracy. This work investigated a method to correct the BS effects to improve the accuracy of optical diagnostics, with particle imagine velocimetry (PIV) measurements on turbulent reactive flames as an example. The proposed method used a guiding laser to correct BS. Demonstration in laboratory turbulent flames showed promising results where the accuracy of PIV measurement was significantly enhanced. Applicability to more complicated and practical situations are discussed.
Technical Paper

Detached Eddy Simulation on a Swept Hybrid Model in the IRT

2015-06-15
2015-01-2122
In recent years, there has been a growing desire to incorporate computational methods into aircraft icing certification practices. To improve understanding of ice shapes, a new experimental program in the NASA Icing Research Tunnel (IRT) will investigate swept hybrid models which are very large relative to the test section and are intended to operate at high lift coefficients. The present computations were conducted to help plan the experiments and to ascertain any effects of flow separation and unsteady forces. As they can be useful in robustly and accurately predicting large separation regions and capturing flow unsteadiness, a Detached Eddy Simulation (DES) approach has been adopted for simulating the flow over these large high-lift wing sections. The DES methodology was first validated using experimental data from an unswept NACA 0012 airfoil with leading-edge ice accretion, showing reasonable performance.
Technical Paper

Seat Belts: A Review of Technological Milestones, Regulatory Advancements, and Anticipated Future Trajectories

2021-10-21
2021-01-5097
Decades after their introduction, seat belts remain the most important safety innovation in automotive history. Seat belt usage remains the single most effective way to minimize the risk of injury or death in severe crash events. Despite having matured, seat belts continue to evolve and improve and are expected to play an equally critical role in future passenger vehicles as increasing automation leads to changes in occupant compartment design and occupant-to-vehicle interaction. In this paper, an overview of major technical milestones in the development of seat belts is presented, ranging from the earliest lap belts to today’s systems that seamlessly synthesize and integrate information from a variety of sensors to prepare the restraints for an imminent crash. A brief overview of contemporary regulatory events is also provided, illustrating how regulatory actions have followed and occasionally driven the development and proliferation of various aspects of occupant restraints.
X