Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Dynamic Response of Vehicle Roof Structure and ATD Neck Loading During Dolly Rollover Tests

2010-04-12
2010-01-0515
The debate surrounding roof deformation and occupant injury potential has existed in the automotive community for over 30 years. In analysis of real-world rollovers, assessment of roof deformation and occupant compartment space starts with the post-accident roof position. Dynamic movement of the roof structure during a rollover sequence is generally acknowledged but quantification of the dynamic roof displacement has been limited. Previous assessment of dynamic roof deformation has been generally limited to review of the video footage from staged rollover events. Rollover testing for the evaluation of injury potential has typically been studied utilizing instrumented test dummies, on-board and off-board cameras, and measurements of residual crush. This study introduces an analysis of previously undocumented real-time data to be considered in the evaluation of the roof structure's dynamic behavior during a rollover event.
Technical Paper

Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

2020-04-14
2020-01-0935
Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection.
Technical Paper

Evaluation of Laminated Side Window Glazing Coding and Rollover Ejection Mitigation Performance Using NASS-CDS

2020-04-14
2020-01-1216
Occupant ejection has been identified as a safety problem for decades, particularly in rollover crashes. While field accident studies have repeatedly demonstrated the effectiveness of seat belts in mitigating rollover ejection and injuries, the use of laminated glass in side window positions has been suggested as a means to mitigate occupant ejection. Limited data is available on the field performance of laminated glass in preventing ejection. This study utilized 1997-2015 NASS-CDS data to investigate the reliability of the glazing coding variables in the database and determine if any conclusions can be drawn regarding the effect of different side window glazing types on occupant ejection. An initial query was run for 1997-2016 model year vehicles involved in side impacts to evaluate glazing coding within NASS-CDS.
Technical Paper

Six-Degree-of-Freedom Accelerations: Linear Arrays Compared with Angular Rate Sensors

2010-04-12
2010-01-1017
A 3-2-2-2 array of linear accelerometers and a combination of a triaxial linear accelerometer and a triaxial angular rate sensor were mounted into a Hybrid III 50th percentile male ATD head-form and compared in a variety of short- and long-duration events. An appropriate low-pass filter cutoff frequency for differentiating the angular rate sensor data into angular accelerations was found by using a residual analysis to find individual cutoff frequencies for the three center of mass (COM) linear accelerometer channels and the three angular rate sensor channels and taking the arithmetic mean of the six cutoffs. The angular rate sensors provide more accurate rotational rates than integrated angular accelerations calculated from arrays of linear accelerometers and are less cumbersome, especially for events lasting longer than 200 ms.
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Journal Article

Infrastructure-Based Sensor Data Capture Systems for Measurement of Operational Safety Assessment (OSA) Metrics

2021-04-06
2021-01-0175
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) needs to be quantified for an understanding of risk, requiring the measurement of parameters as they relate to AVs and human driven vehicles alike. In prior work by the Institute of Automated Mobility (IAM), operational safety metrics were introduced as part of an operational safety assessment (OSA) methodology that provide quantification of behavioral safety of AVs and human-driven vehicles as they interact with each other and other road users. To calculate OSA metrics, the data capture system must accurately and precisely determine position, velocity, acceleration, and geometrical relationships between various safety-critical traffic participants. The design of an infrastructure-based system that is intended to capture the data required for calculation of OSA metrics is addressed in this paper.
Journal Article

SAE Light Vehicle Exterior Sound Level History

2021-08-31
2021-01-1120
The Society of Automotive Engineers Light Vehicle Exterior Sound Committee recognizes the value of preserving historical knowledge regarding the standards developed and reviewed by the committee. To memorialize the knowledge gained and lessons learned over the years, the current committee reached out to the chair of the committee during its formative years, Mr. Richard Schumacher, to discuss the rationale and reasoning for many of the early decisions made regarding vehicle sound standards. This work preserves those discussions and relates the history of some of the most commonly used sound level standards. In this paper and presentation, the formation of the committee is discussed, particularly in relation to EPA’s original concern with vehicle noise, as well as the alignment between SAE standards and ISO standards for vehicle noise measurements. The role of the committee is examined, and the review process for SAE vehicle sound standards is explained.
Technical Paper

The Use of Stationary Object Radar Sensor Data from Advanced Driver Assistance Systems (ADAS) in Accident Reconstruction

2016-04-05
2016-01-1465
As a result of the development of Event Data Recorders (EDR) and the recent FMVSS regulation 49 CFR 563, today’s automobiles provide a limited subset of electronic data measurements of a vehicle’s state before and during a crash. Prior to this data, the only information available about the vehicle movements before or during a collision had come from physical evidence (e.g. tire marks), witnesses, aftermarket camera systems on vehicles, and ground-based cameras that were monitoring vehicle traffic or used for security surveillance. Today’s vehicles equipped with Advanced Driver Assistance Systems (ADAS) have vehicle-based sensors that measure information about the environment around a vehicle including other vehicles, pedestrians, and fixed wayside objects.
Technical Paper

A Study of Vehicle Impacts during Dolly Rollover Tests and Comparison to Frontal and Side Impact Tests

2014-04-01
2014-01-0529
Studies of rollover accidents have reported crash attributes such as the number of rolls, rollout distance, initial over-the-ground speed, average roll rate, average over-the-ground deceleration, magnitude of roof deformation, cumulative damage, time and post-crash headroom. While these more general attributes are related to the repeated vehicle-to-ground impacts during a rollover, it has been previously shown [1] that a specific ground impact during a rollover and its consequences can be studied in more detail by using its acceleration time history (crash pulse or impulse) and energy loss. These two quantities are particularly meaningful to use when studying impact mechanics, however, they are limited to circumstances where the data exists, which means real-world on-road crashes cannot be used directly. Acceleration and energy data have been collected and previously published for three Subaru Forester dolly rollover tests, and have been studied in more detail in this writing.
Journal Article

Using the Instantaneous Center of Rotation to Examine the Influence of Yaw Rate on Occupant Kinematics in Eccentric Planar Collisions

2022-03-29
2022-01-0826
The biomechanical injury assessment for an occupant in a planar vehicle-to-vehicle collision often requires a kinematic analysis of impact-related occupant motion. This analysis becomes more complex when the collision force is eccentric to the center of gravity on a struck vehicle because the vehicle kinematics include both translation and potentially significant yaw rotational rates. This study examines the significance of vehicle yaw on occupant kinematics in eccentric (off-center) planar collisions. The paper describes the calculation of the instantaneous center of rotation (ICR) in a yawing vehicle post-impact and explores how mapping this quantity may inform an occupant’s trajectory when using a free particle “occupant” analysis. The study initially analyzed the impact-related occupant motion for all the outboard seat positions in a minivan using several hypothetical examples of eccentric vehicle-to-vehicle crash configurations with varying PDOF, delta-V, and yaw rate.
Technical Paper

Validation of High Dynamic Range Photography as a Tool to Accurately Represent Low-Illumination Scenes

2012-04-16
2012-01-0078
Previous research [1] described a procedure for creating prints from digital photographs that accurately represent critical features of visual scenes at low levels of illumination. In this procedure, observers adjust the brightness of a digital photographs captured using standard photography until it best matches the visible characteristics of the actual scene. However, standard digital photography cannot capture the full dynamic range of a scene's luminous intensities in many low-illumination settings. High dynamic range (HDR) photography has the potential to more accurately represent a viewer's perception under low illumination. Such a capability can be critical to representing nighttime roadway scenes, where HDR photography can enable the creation of more accurate photographic representations of bright visual stimuli (e.g., vehicle headlamps, street lighting) while also maintaining the integrity of the photograph's darker portions.
Technical Paper

Calculating Vehicle Side Structure Stiffness from Crash Test Data: Effects of Impactor Characteristics

2020-04-14
2020-01-0640
This research examines the effects of impactor characteristics on the calculated structural stiffness parameters A and B for the struck sides of late-model vehicles. This study was made possible by crash testing performed by the National Highway Traffic Safety Administration involving side impacts of the same vehicle line with both a rigid pole and with a moving deformable barrier. Twenty-nine crash test pairs were identified for 2018 model-year vehicles. Of 60 total tests, 49 were analyzed. Test data for 19 vehicles impacted in both modes resulted in A and B values considered to be valid. Classifying these 19 vehicles according to the categories defined by Siddall and Day, only Class 2 multipurpose vehicles were represented by enough vehicles (10) to search for trends within a given vehicle category. For these vehicles, more scatter in the results was observed in both A and B values for the MDB impacts compared to the pole impacts.
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
Technical Paper

Motorcycle Rider Inputs During Typical Maneuvers

2020-04-14
2020-01-1000
The purpose of this research is to document representative examples of control inputs and body positioning experienced riders use to control a motorcycle through maneuvers representative of those encountered during real-world operation. There is limited publicly available data that tracks the magnitude or direction of steering head rotation, steering torque input, etc. used by a rider to initiate and exit a turn as well as maintaining directional control during maneuvers ranging from slow parking lot turns to high speed lane changes. Using Exponent’s Test and Engineering Center (TEC) track and skid pad, a course was defined that included several maneuvers at various speeds and radii. A previous paper [1] investigated the influence of rider kinematics (weight shift) on motorcycle control.
X