Refine Your Search

Topic

Author

Search Results

Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Journal Article

A Simple Method to Insure Bus-to-Bus Safety in Dual-Voltage Automotive Systems

2014-04-01
2014-01-0244
In some automotive electrical systems, it is advantageous to use power supplies and loads at two or more voltages. Often it is desirable to retain the single wire power architecture, with the car body providing the return circuit. A major difficulty in achieving this end is the matter of dealing with the possibility of a short circuit between feed wires at different voltages. It can be shown that source-side fuses cannot be relied upon to return the system to a safe state in all cases. Substantial effort was applied to this problem in the early years of the 21st century, but the results were less than completely satisfactory. Using entirely separate cable harnesses for each voltage, with physically separated routing, minimizes the risk of such a short occurring in the harness.
Technical Paper

Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

2020-04-14
2020-01-0935
Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection.
Technical Paper

The Effect of Obesity on Rollover Ejection and Injury Risks

2020-04-14
2020-01-1219
Obesity rates are increasing among the general population. This study investigates the effect of obesity on ejection and injury risk in rollover crashes through analysis of field accident data contained in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The study involved front outboard occupants of age 15+ years in 1994+ model year vehicle rollover crashes. Occupants were sorted into two BMI groups, normal (18.5 kg/m2 ≤ BMI < 25.0 kg/m2) and obese (BMI ≥30 kg/m2). Complete and partial ejection risks were first assessed by seating location relative to roll direction and belt use. The risk of serious-to-fatal injuries (MAIS 3+F) in non-ejected occupants were then evaluated. The overall risk for complete ejection was 2.10% ± 0.43% when near-sided and 2.65% ± 0.63% when far-sided, with a similar risk for both the normal and obese BMI groups.
Technical Paper

Characterization of Thoracic Spinal Development by Age and Sex with a Focus on Occupant Safety

2020-04-14
2020-01-0520
Spine degeneration can lower injury tolerance and influence injury outcomes in vehicle crashes. To date, limited information exists on the effect of age and sex on thoracic spine 3-dimensional geometry. The purpose of this study is to quantify thoracic spinal column and canal geometry using selected geometrical measurement from a large sample of CT scans. More than 33,488 scans were obtained from the International Center for Automotive Medicine database at the University of Michigan under Institutional Review Board approval (HUM00041441). The sample consisted of CT scans obtained from 31,537 adult and 1,951 pediatric patients between the ages of 0 to 99 years old. Each scan was processed semi-automatically using custom algorithms written in MATLAB (The Math Works, Natick, MA). Five geometrical measurements were collected including: 1) maximum spinal curvature depth (D), 2) T1-to-T12 vertical height (H), 3) Kyphosis Index (KI), 4) kyphosis angle, and 5) spinal canal radius.
Journal Article

Timber Utility Pole Fracture Mechanics Due to Non-Deformable and Deformable Moving Barrier Impacts

2011-04-12
2011-01-0288
The energy dissipated by the fracture of wooden utility poles during vehicle impacts is not currently well documented, is dependent upon non-homogenous timber characteristics, and can therefore be difficult to quantify. While there is significant literature regarding the static and quasi-static properties of wood as a building material, there is a narrow body of literature regarding the viscoelastic properties of timber used for utility poles. Although some theoretical and small-scale testing research has been published, full-scale testing has not been conducted for the purpose of studying the vehicle-pole interaction during impacts. The parameters that define the severity of the impact include the acceleration profile, vehicle velocity change, and energy dissipation. Seven full-scale crash tests were conducted at Exponent's Arizona test facility utilizing both moving deformable and non-deformable barriers into new wooden utility poles.
Technical Paper

Lane-Keeping Behavior and Cognitive Load with Use of Lane Departure Warning

2017-03-28
2017-01-1407
Lane Departure Warning (LDW) systems, along with other types of Advanced Driver Assistance Systems (ADAS), are becoming more common in passenger vehicles, with the general aim of improving driver safety through automation of various aspects of the driving task. Drivers have generally reported satisfaction with ADAS with the exception of LDW systems, which are often rated poorly or even deactivated by drivers. One potential contributor to this negative response may be an increase in the cognitive load associated with lane-keeping when LDW is in use. The present study sought to examine the relationship between LDW, lane-keeping behavior, and concurrent cognitive load, as measured by performance on a secondary task. Participants drove a vehicle equipped with LDW in a demarcated lane on a closed-course test track with and without the LDW system in use over multiple sessions.
Technical Paper

Steering Shaft Separation with a Collision Involved Heavy Duty Steering Gear

2018-04-03
2018-01-0524
A crash of a medium duty truck led to a study of the failure mechanism of the truck’s steering system. The truck, after being involved in a multi-vehicle vehicle collision, was found with its steering input shaft disconnected from the steering gear. The question arose whether the steering gear failure was a result of the collision, or causative to the collision. An in-depth investigation was conducted into whether forces on the vehicle due to the collision could cause the steering shaft to separate from the steering gear. Additionally, the performance of the steering gear with the adjuster nut progressively backed off was studied to determine the feedback a driver would receive if the steering gear came progressively apart. From the results of these studies, conclusions with regard to the crash causation were reached.
Technical Paper

Tractor-Semitrailer Driver and Sleeping Compartment Occupant Responses to Low-Speed Impacts

2012-04-16
2012-01-0566
Low-speed collisions between tractor-semitrailers and passenger vehicles may result in large areas of visible damage to the passenger vehicle, but often produce limited damage to the tractor-semitrailer. Despite this, such accidents may lead to assertions of serious injury to the tractor driver and/or sleeper compartment occupant. Research regarding the impact environment and resulting injury potential of the occupants during these types of impacts is limited. This research investigated driver and sleeper compartment occupant responses to relatively low-speed and low-acceleration impact events. Five crash tests involving impact between a tractor-semitrailer and a passenger car were conducted. The test vehicles were a van semitrailer pulled by a tractor and three identical mid-sized sedans. The occupants of the tractor included a human driver and an un-instrumented Hybrid III 50th-percentile-male anthropomorphic test device (ATD).
Technical Paper

Effect of Occupant Weight and Initial Position in Low-to-High Speed Rear Sled Tests with Older and Modern Seats

2021-04-06
2021-01-0918
The average body weight of the US population has increased over time. This study investigates the effect of increasing weight on seat and occupant responses in 15-18 km/h and 42 km/h rear sled tests. The effect of initial occupant posture is also discussed. Seven tests were conducted with lap-shoulder belted ATDs (anthropometric test device) placed on older and modern driver seats. Four tests were conducted with a 50th percentile male Hybrid III, two with 95th percentile male Hybrid III and one with a BioRID. The ATDs were ballasted to represent a Class I or II obese occupant in three tests. The tests were matched by seat model and sled velocity. The effect of occupant weight was assessed in three matches. The results indicated an increase in seatback deflection with increasing occupant weight.
Technical Paper

Evaluation of Operational Safety Assessment (OSA) Metrics for Automated Vehicles in Simulation

2021-04-06
2021-01-0868
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using well-defined metrics in order to gain an unambiguous understanding of the level of risk associated with AV deployment on public roads. In this research, efforts to evaluate the operational safety assessment (OSA) metrics introduced in prior work by the Institute of Automated Mobility (IAM) are described. An initial validation of the proposed set of OSA metrics involved using the open-source simulation software Car Learning to Act (CARLA) and Scenario Runner, which are used to place a subject vehicle in selected scenarios and obtain measurements for the various relevant OSA metrics. Car following scenarios were selected from the list of 37 pre-crash scenarios identified by the National Highway Traffic Safety Administration (NHTSA) as the most common driving situations that lead to crash events involving two light vehicles.
Journal Article

Biomechanics of Occupant Responses during Recreational Off-Highway Vehicle (ROV) Riding and 90-degree Tip-overs

2012-04-16
2012-01-0096
Recently, side-by-side Recreational Off-Highway Vehicles (ROVs) have brought elements of the on-road vehicle occupant environment to the off-road trail-riding world. In general, ROV occupant protection during normal operation and in accident scenarios is provided predominately by a roll cage, seatbelts, contoured seats with seat backs, handholds, and other components. Typical occupant responses include both passive (inertial) and active (muscular) components. The objective of the current study was to evaluate and quantify these passive and active occupant responses during belted operation of an ROV on a closed course, as well as during 90-degree tip-over events. Passive occupant responses were evaluated using anthropomorphic test devices (ATDs) in 90-degree tip-overs simulated on a deceleration sled.
Technical Paper

Evaluating the Severity of Safety Envelope Violations in the Proposed Operational Safety Assessment (OSA) Methodology for Automated Vehicles

2022-03-29
2022-01-0819
As the automated vehicle (AV) industry continues to progress, it is important to establish the level of operational safety of these vehicles prior to and throughout their deployment on public roads. The Institute of Automated Mobility (IAM) has previously proposed a set of operational safety assessment (OSA) metrics which can be used to quantify the operational safety of vehicles. The OSA metrics provide a starting point to consistently quantify performance, but a framework to interpret the metrics measurements is needed to objectively quantify the overall operational safety for a vehicle in a given scenario. This work aims to present an approach to applying a calculation of the safety envelope component of the OSA metrics to rear-world collisions for use in such an assessment. In this paper, the OSA methodology concept is introduced as a means for quantifying the operational safety of a vehicle.
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Technical Paper

Electric Vehicle Battery Safety and Compliance

2023-04-11
2023-01-0597
Electric vehicles (EVs) and the development around them has been rapid in recent years. As the battery is the most essential component of an electric vehicle, a lot of research and analysis has been focused on ensuring safe and reliable performance of batteries. Considering the location, size, and operating conditions for EV batteries, they must be designed with an in-built safety infrastructure keeping in mind certain realistic scenarios such as fire exposure, mechanical vibration, collisions, over-charging, single cell failures, and others. In this paper, we discuss an overview of various EV battery failure mechanisms, present current safety and abuse testing methods and standards associated with such mechanisms and discuss the need for the development and implementation of additional testing standards to better characterize the safety performance of EV battery packs.
Technical Paper

Seat Performance in Rear Impacts: Seatback Deflection and Energy Dissipation

2021-04-06
2021-01-0916
Occupant protection in rear crashes is complex. While seatbelts and head restraints are effective in rear impacts, seatbacks offer the primary restraint component to front-seat occupants in rear impacts. Seatback deflection due to occupant loading can occur in a previous rear crash and/or in multiple-rear event crashes. Seatback deflection will in-turn affect the plastic seatback deformation and energy absorption capabilities of the seat. This study was conducted to provide information on seatback deflection and seat energy consumption in low and high-speed rear impacts. The results can be used to examine seatback deflection and energy consumed in a previous rear impact, or in collisions with multiple rear impacts. Prior seatback deflection and energy absorption can affect the total remaining energy absorption and seat performance for a subsequent rear impact.
Technical Paper

Effects of Innovation in Automated Vehicles on Occupant Compartment Designs, Evaluation, and Safety: A Review of Public Marketing, Literature, and Standards

2019-04-02
2019-01-1223
In recent years, the discussion around the advent of highly automated vehicles has shifted from “if” to “when.” Commercially available vehicles already incorporate automated vehicle (AV) technologies of varying capability, and the eventual transition to fully automated systems, at least within certain predefined Operational Design Domains, is largely considered inevitable. While the full ramifications of this shift and the eventual depreciation of human driver control are still under intense debate, there is broad agreement on one issue -the advent of driverless systems will remove several constraints on the design of vehicle interior spaces, creating the opportunity for innovation. Even at this early stage, ambitious design concepts of purpose specific vehicles - mobile gyms, offices, bedrooms - have been proposed. More grounded designs, such as rotating passenger seats, have also been put forward.
Technical Paper

Evaluation of Ejection Risk and Injury Distribution Using Data from the Large Truck Crash Causation Study (LTCCS)

2014-04-01
2014-01-0491
Three years of data from the Large Truck Crash Causation Study (LTCCS) were analyzed to identify accidents involving heavy trucks (GVWR >10,000 lbs.). Risk of rollover and ejection was determined as well as belt usage rates. Risk of ejection was also analyzed based on rollover status and belt use. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants. These data were further analyzed to determine injury distribution based on factors such as crash type, ejection, and restraint system use. The maximum AIS score (MAIS) was analyzed and each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered for an AIS score of three or greater (AIS 3+). The majority of heavy truck occupants in this study were belted (71%), only 2.5% of occupants were completely or partially ejected, and 28% experienced a rollover event.
Journal Article

Full-Scale Burn Test of a 2001 Full-Size Pickup Truck

2013-04-08
2013-01-0214
Temperature measurements during a full-scale burn test of a 2001 full-size pickup truck showed that the fire progressed in distinct stages in both the engine and passenger compartments. Although the fire started in the engine compartment and had a relatively long growth period, when a localized area reached about 700°C, a distinct transition occurred where the rate of fire spread increased, leading to full involvement of all engine compartment combustibles. As the engine compartment became fully involved, a hot gas layer then accumulated at the ceiling of the passenger compartment, producing a strong vertical temperature gradient. When the temperature at the ceiling reached about 600°C, another distinct transition occurred where the rate of fire spread increased, leading to full involvement of the passenger compartment. The highest temperature during the test occurred within the engine compartment in an area that had the greatest fuel load, and not the area of origin.
Journal Article

Full-scale Fire Tests of Electric Drive Vehicle Batteries

2015-04-14
2015-01-1383
Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
X