Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Technical Paper

A Linear Quadratic Integral Approach to the Profiling of Engine Speed for Synchronization

2024-04-09
2024-01-2139
During driving conditions, when it is needed to transition from Electric Vehicle (EV) to Hybrid Vehicle operation, synchronization of the engine with the shaft and transmission is essential to enable clutch engagement and, subsequently, providing engine power to the wheels. Challenges arise when the engine must generate power to move itself and cannot rely on electric motors for precision. Cost-effective hybrid vehicle propulsion architectures which utilize small 12V belt-starter generators (BSGs) to initiate engine activation are inherently affected. In these situations, a speed profile that balance rapid response and control effort while considering system limitations to mitigate undesirable overshoots and delays, is required. This paper presents a Linear Quadratic Integral (LQI) approach to formulate a speed reference profile that ensures optimal engine behavior.
X