Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Transient Modelling of Vehicle Exhaust Surface Temperature

2016-04-05
2016-01-0280
In this paper, the development of a transient thermal analysis model for the exhaust system is presented. Given the exhaust gas temperature out of the engine, a software tool has been developed to predict changes in exhaust gas temperature and exhaust surface temperature under various operating conditions. The software is a thermal solver that will predict exhaust gas and wall surface temperatures by modeling all heat transfer paths in the exhaust system which includes multi-dimensional conduction, internal forced/natural convection, external forced/natural convection, and radiation. The analysis approach involves the breaking down of the thermal system into multiple components, which include the exhaust system (manifold, takedown pipe, tailpipe, etc.), catalytic converter, DPF (diesel particulate filter), if they exist, thermal shields, etc. All components are modeled as 1D porous and 1D non-porous flow streams with 3D wall layers (solid and air gaps).
Journal Article

Utilization of Bench Testing in Vehicle Thermal System Development for Extreme Cold Ambient Condition

2020-04-14
2020-01-1390
Automotive thermal systems are becoming complicated each year. The powertrain efficiency improvement initiatives are driving transmission and engine oil heaters into coolant network design alternatives. The initiatives of electrified and autonomous vehicles are making coolant networks even more complex. The coolant networks these days have many heat exchangers, electric water pumps and valves, apart from typical radiators, thermostat and heater core. Some of these heat exchangers, including cabin heaters deal with very small amount of coolant flow rates at different ambient conditions. This paper describes how viscosity can be a major reason for simulation inaccuracy, and how to deal with it for each component in the coolant network. Both experimental and computational aspects have been considered in this paper with wide range of ambient temperatures.
X