Refine Your Search

Topic

Author

Search Results

Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
Technical Paper

A Vehicle Level Transient Thermal Analysis of Automotive Fuel Tanks

2020-04-14
2020-01-1342
Maintaining the fuel temperature and fuel system components below certain values is an important design objective. Predicting these temperatures is therefore one of the key parts of the vehicle’s thermal management process. One of the physical processes affecting fuel tank temperature is fuel vaporization, which is controlled by the vapor pressure in the tank, fuel composition and fuel temperature. Models are developed to enable the computation of the fuel temperature, fuel vaporization rate in the tank, fuel temperatures along the fuel supply lines, and follow its path to the charcoal canister and into the engine intake. For diesel fuel systems where a fuel return line is used to return excess fluid back to the fuel tank, an energy balance will be considered to calculate the heat added from the high-pressure pump and vehicle under-hood and underbody.
Technical Paper

Development of a Computational Algorithm for Estimation of Lead Acid Battery Life

2020-04-14
2020-01-1391
The performance and durability of the lead acid battery is highly dependent on the internal battery temperature. The changes in internal battery temperatures are caused by several factors including internal heat generation and external heat transfer from the vehicle under-hood environment. Internal heat generation depends on the battery charging strategy and electric loading. External heat transfer effects are caused by customer duty cycle, vehicle under-hood components and under-hood ambient air. During soak conditions, the ambient temperature can have significant effect on battery temperature after a long drive for example. Therefore, the temperature rise in a lead-acid battery must be controlled to improve its performance and durability. In this paper a thermal model for lead-acid battery is developed which integrates both internal and external factors along with customer duty cycle to predict battery temperature at various driving conditions.
Journal Article

Sizing of Coolant Passages in an IC Engine Using a Design of Experiments Approach

2015-04-14
2015-01-1734
Determining coolant flow distribution in a topologically complex flow path for efficient heat rejection from the critical regions of the engine is a challenge. However, with the established computational methodology, thermal response of an engine (via conjugate heat transfer) can be accurately predicted [1, 2] and improved upon via Design of Experiment (DOE) study in a relatively short timeframe. This paper describes a method to effectively distribute the coolant flow in the engine coolant cavities and evenly remove the heat from various components using a novel technique of optimization based on an approximation model. The current methodology involves the usage of a sampling technique to screen the design space and generate the simulation matrix. Isight, a process automation and design exploration software, is used to set the framework of this study with the engine thermal simulation setup done in the CFD solver, STAR-CCM+.
Journal Article

Design of a Composite Structural Panel for High Volume Production

2015-04-14
2015-01-1311
As CAFE requirements increase, automotive OEMs are pursuing innovative methods to lightweight their Body In Whites (BIWs). Within FCA US, this lightweighting research and development activity often occurs through Decoupled Innovation projects. A Decoupled Innovation team comprised of engineers from the BIW Structures Group, in collaboration with Tier 1 supplier Magna Exteriors, sought to re-design a loadbearing component on the BIW that would offer significant weight savings when the current steel component was replaced with a carbon fiber composite. This paper describes the design, development, physical validation and partnership that resulted in a composite Rear Package Shelf Assembly solution for a high-volume production vehicle. As the CAFE requirements loom closer and closer, these innovation-driven engineering activities are imperative to the successful lightweighting of FCA US vehicles.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Technical Paper

Quantification of Clamp Loss and Subsequent Loosening of Automotive Hub-Knuckle Joints under Time-Varying Proving Ground Loading

2020-04-14
2020-01-0181
Threaded fasteners or bolted joints are used extensively in automotive assemblies. There are standard procedures to evaluate joint performance under block cycles or road loads. The deciding load case for such joint design is slippage analysis of the joint. There are studies done to evaluate the theoretical and experimental behavior of these joints. There are different ways of understanding the interaction between the bolt and the nut under different loading scenarios. However, none have provided a satisfactory method of quantifying bolt loosening or loss of clamp load under cyclic loading, where no slippage is observed. Under varying loads, initial relaxation of the joint is followed by a loss of clamping load. Below a critical value, complete loss of clamping load progresses very rapidly and this results in a loose joint.
Technical Paper

Experimental Study on Static and Fatigue Performance of Self-Piercing Riveted Joints and Adhesively Bonded Self-Piercing Riveted Joints Connecting Steel and Aluminum Components

2020-04-14
2020-01-0177
This paper describes an experimental study on the performance of self-piercing riveted (SPR) joints and adhesively bonded SPR joints connecting steel and aluminum components under both quasi-static and cyclic loading. The joint configurations cover a wide range of material gauges, types and grades. Two and three thickness joints, with and without adhesive are also part of this study. Load versus deflection behavior, load carrying capacity, fatigue life and the failure modes for each type of joint are discussed. This study focuses on the influence of dissimilar material and adhesives to the joint performance.
Technical Paper

Review and Assessment of Multiaxial Fatigue Limit Models

2020-04-14
2020-01-0192
The purpose of this paper is to provide a comparison of multiaxial fatigue limit models and their correlation to experimental data. This paper investigates equivalent stress, critical plane and invariant-based multiaxial fatigue models. Several methods are investigated and compared based on ability to predict multiaxial fatigue limits from data published in literature. The equivalent stress based model developed by Lee, Tjhung and Jordan (LTJ), provides very accurate predictions of the fatigue limit under multiaxial loading due to its ability to account for non-proportional loading. This accuracy comes from the model constant which is calculated based on multiaxial fatigue data. This is the only model investigated that requires multiaxial fatigue testing to generate the model parameters. All other models rely on uniaxial test results.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Experimental Study on Static and Fatigue Behavior of a Short Glass Fiber Reinforced Polypropylene

2020-04-14
2020-01-0190
One approach of lighting vehicle weight is using composite materials. Fiber reinforced polypropylene is one of the most popular composite materials. To improve accuracy in the prediction of durability performance of structures made of this kind of composite material, static and fatigue properties of a short glass fiber reinforced polypropylene have been physically studied. This paper describes details of test coupon design, fabrication, test setup of both quasi-static and fatigue tests, test results and discussions. In this study, various loading orientations (0o, 20o, 90o and knit line), temperatures (22oC/23oC and 80oC/85oC), loading ratio (R = -1.0, -0.5, -0.2, 0.1 and 0.4) are considered.
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Study on the Effects of Rubber Compounds on Tire Performance on Ice

2020-04-14
2020-01-1228
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics such as the wear of the tread, there is a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into tire-ice performance and modeling. A significant part of this study is the experimental investigation of the effect of rubber compounds on tire performance in contact with ice. For this, four tires have been selected for testing. Three of them are completely identical in all tire parameters (such as tire dimensions), except for the rubber compounds. Several tests were conducted for the chosen tires in three modes: free rolling, braking, and traction.
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Stability Analysis of Automotive Supervisory Control: A Survey

2011-04-12
2011-01-0974
This paper focuses on stability of automotive supervisory control systems (ASCSs). It serves to introduce the concept of stability with respect to an entire ASCS. The realm of ASCSs is categorized and a brief description of pre-existing classical methods of stability analysis is presented. With the concept then having been fully introduced, an approach to evaluating stability of a key category of ASCS, the rule-based deterministic ASCS, is presented. This approach, cited from unrelated modern literature concerning stability of deterministic finite state machines, is novel in that its original target research area was not specifically automotive engineering.
Technical Paper

Comparison of Direct and Metamodel Based Optimization in the Coolant Jacket Design of an IC Engine

2021-04-06
2021-01-0841
This paper focuses on the conjugate heat transfer analysis of an I4 engine, and discusses optimization of the coolant passages in engine coolant jackets. Direct Optimization approach integrates an optimizer with the numerical solver. This method of optimization is compared with a metamodel-based optimization in which a metamodel is generated to aid in finding an optimal design. The direct optimization and metamodel approaches are compared in terms of their accuracy, and execution time.
Technical Paper

Lateral Controllability for Automated Driving (SAE Level 2 and Level 3 Automated Driving Systems)

2021-04-06
2021-01-0864
In this study we collect and analyze data on how hands-free automated lane centering systems affect the controllability of a hazardous event during an operational situation by a human operator. Through these data and their analysis, we seek to answer the following questions: Is Level 2 and Level 3 automated driving inherently uncontrollable as a result of a steering failure? Or, is there some level of operator control of hazardous situations occurring during Level 2 and Level 3 automated driving that can reasonably be expected, given that these systems still rely on a driver as the primary fall back. The controllability focus group experiments were carried out using an instrumented MY15 Jeep® Cherokee with a prototype Level 2 automated driving system that was modified to simulate a hands-free steering system on a closed track with speeds up to 110kph. The vehicle was also fitted with supplemental safety measures to ensure experimenter control.
Technical Paper

Design of an All-Revolute, Linkage-Type, Constant-Velocity Coupling

1995-09-01
952133
This paper describes a design methodology for a three degree-of-freedom, linkage-based constant-velocity coupling. This coupling resembles the Clemens coupling patented in 1872 and has evolved from the authors' previous research in parallel mechanisms. This coupling contains only revolute joints and is therefore likely to be more durable and less prone to manufacturing errors than conventional higher-pair couplings. The kinematic configuration, based on the symmetric double octahedral Variable Geometry Truss mechanism (figure 2), has many inherent traits that make it ideal for application to industrial uses. Its parallel design of simple links and revolute joints provide it with high strength, rigidity, and light-weight characteristics. It has a link-joint construction that allows its geometry to be varied for specific applications, such as producing high angular deflection between the input and output shafts.
Technical Paper

Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure

2005-07-11
2005-01-2926
Long-duration space missions require high-quality, nutritious foods, which will need reheating to serving temperature, or sterilization on an evolved planetary base. The package is generally considered to pose a disposal problem after use. We are in the process of development of a dual-use package wherein the food may be rapidly reheated in situ using the technology of ohmic heating. We plan to make the container reusable, so that after food consumption, the package is reused to contain and sterilize waste. This approach will reduce Equivalent System Mass (ESM) by using a compact heating technology, and reducing mass requirements for waste storage. Preliminary tests of the package within a specially-designed ohmic heating enclosure show that ISS menu item could easily be heated using ohmic heating technology. Mathematical models for heat transfer were used to optimize the layout of electrodes to ensure uniform heating of the material within the package.
Technical Paper

Prediction of Tow Hook and Bolted Joint Strength Behavior Using Virtual Test Simulation Technique

2020-04-14
2020-01-1399
There is an increasing demand for reducing vehicle development process and minimizing cost due to tough competition in Automotive market. One of the major focus areas is minimizing the vehicle proto build that are required for physical testing during vehicle development. Tow hooks are key structural components for the vehicle, which are designed to withstand structural strength performance under various vehicles towing condition. Typical extreme load scenario for the vehicle can be towing fully loaded vehicle breaks down on uphill road or stuck in wet muddy condition. To exercise the tow hook structural development in early design phase, it is important to have reliable simulation process. This paper focuses on development of virtual test simulation process that replicates the tow hook system test behavior for the operating load. The study includes the detail modeling of clevis load applicator, tow hook, bolt joint and attached test bed plate for capturing the load path.
X