Refine Your Search

Topic

Author

Search Results

Viewing 1 to 18 of 18
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Technical Paper

Investigations Regarding Deposit Formation on Diesel Oxidation Catalysts

2020-04-14
2020-01-1432
Catalyst fouling by deposit formation on components in the exhaust aftertreatment system is critical since RDE limits must be obtained at any time. Besides, uncontrolled oxidation of carbonaceous deposits might damage the affected exhaust aftertreatment component. To comply with current and future emission standards, diesel engines are usually operated with high EGR rates leading to increased soot and hydrocarbon emissions, which increases the likeliness of the formation of carbonaceous deposits on EAT components. With this background, a research project investigating the influencing parameters and mechanisms of deposit formation on DOCs was carried out. In a follow-up project, the results will be used in order to compare different deposit removal strategies. Within the scope of the presented project, a reference driving cycle was developed in order to create deposits within a short time.
Journal Article

Evaluation of the Potential of Water Injection for Gasoline Engines

2017-09-04
2017-24-0149
Gasoline engine powertrain development for 2025 and beyond is focusing on finding cost optimal solutions by balancing electrification and combustion engine efficiency measures. Besides Miller cycle application, cooled exhaust gas recirculation and variable compression ratio, the injection of water has recently gained increased attention as a promising technology for significant CO2 reduction. This paper gives deep insight into the fuel consumption reduction potential of direct water injection. Single cylinder investigations were performed in order to investigate the influence of water injection in the entire engine map. In addition, different engine configurations were tested to evaluate the influence of the altering compression ratios and Miller timings on the fuel consumption reduction potential with water injection.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions in Early Stages of a Vehicle Development Program by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emissions are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during real road driving, so called “Real Driving Emissions” (RDE), are now part of the type approval process for passenger cars. In addition to the proceeding hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines (ICE) are also continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by customers, are essentially important and vary between markets.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Technical Paper

Optimization of Electric Vehicle Exterior Noise for Pedestrian Safety and Sound Quality

2017-06-05
2017-01-1889
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Electric and hybrid electric vehicles do not typically utilize IC engines for low-speed operation. Under these low-speed operating conditions, the vehicles are much quieter than conventional IC engine-powered vehicles, making their approach difficult to detect by pedestrians. To mitigate this safety concern, many manufacturers have synthesized noise (using exterior speakers) to increase detection distance. Further, the US National Highway Traffic Safety Administration (NHTSA) has provided recommendations pursuant to the Pedestrian Safety Enhancement Act (PSEA) of 2010 for such exterior noise signatures to ensure detectability.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

Active Sound Design Methodologies for Hybrid and Electric Vehicles

2021-08-31
2021-01-1019
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of innovative drivetrain technologies including conventional and electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets for 2025 and beyond. NVH development for vehicles with electrified powertrains introduces new challenges, which need to be understood and solved. The electrified vehicle space spans variants from micro and mild hybrids all the way through plug-in hybrids and fully electric vehicles. In addition to conventional NVH development methodologies, active sound design (ASD) can play a crucial role to enhance the interior sound perception of such vehicles and hence, improve customer acceptance of new technologies. This paper will begin with an introduction to the NVH challenges posed by electrified vehicles.
Technical Paper

Optimized Exhaust After-Treatment System Solution for Indian Heavy Duty City Bus Application - The Challenges Involved and the Right Approach to Meet Future BS VI Emission Legislations and Real World Driving Emissions

2019-01-09
2019-26-0139
The vehicular pollution and emission levels are alarmingly increasing in India. The metro and urban cities are worst hit by the gaseous and particulate emissions produced by internal combustion engine powered vehicles. Following the trend from other developed countries, Government of India (GOI) has decided to migrate from existing BS IV legislation directly to BS VI legislation from April 2020 all across India. This migration in emission legislation took almost 10 years to be implemented in European Union (EU) countries. However, for India, the targeted implementation time is just 3 years, making it an uphill challenge for all the vehicle manufacturers. City bus is one such applications, which run mostly within the city and currently are powered by conventional Diesel engines. The vehicle manufacturers should focus on finding an optimized solution for meeting the future emission legislation in true sense.
Technical Paper

NVH Aspects of Electric Drive Unit Development and Vehicle Integration

2019-06-05
2019-01-1454
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. This will also include a strong growth in the global demand for electric drive units (EDUs). The change from conventional vehicles to vehicles propelled by EDUs leads to a reduction in overall vehicle exterior and interior noise levels, especially during low-speed vehicle operation. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components as well as relatively high shares of road/wind noise. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Journal Article

Ultra-Low NOx Emissions with a Close-Coupled Emission Control System on a Heavy-Duty Truck Application

2021-09-21
2021-01-1228
Heavy-duty vehicles represent a significant portion of road transport and they need to operate in a clean and efficient manner. Their emission control systems need to be enhanced to sustain the high conversion efficiencies seen during motorway conditions inother operating conditions. The European Commission is developing legislative proposals for Euro 7 emissions regulations for light- and heavy-duty vehicles. The new Euro 7regulation will likely focus on ensuring the emissions from heavy-duty vehicles are minimized over extensive on-road operating conditions and specifically on operating conditions such as urban driving and cold-start operation. These challenges are increased by the need to ensure low secondary emissions like NH3 and N2O, as well as a low impact on CO2 emissions. The paper outlines the low pollutant emissions achieved by a heavy-duty Diesel demonstrator vehicle.
Journal Article

Coupled Dynamic Simulation of Two Stage Variable Compression Ratio (VCR) Connecting Rod Using Virtual Dynamics

2019-01-09
2019-26-0031
The fuel consumption of combustion engines requires continuous reduction to meet future CO2 fleet targets. The progression of emission legislations shifted the focus on PN and NOX emissions in real world driving scenarios (RDE). Recently, the monitoring of CO emissions puts high load fuel enrichment for component protection into focus and a ban on enrichment is widely expected. Hence, gasoline engine technologies, which enable Lambda 1 operation in the entire engine map are specifically promoted. Variable Compression Ratio (VCR) attacks all these topics already at the combustion process. In addition to the well-known CO2 capability, VCR also enables enlargement of the lambda 1 operation in gasoline engines as well as reduced NOX emissions in diesel engines. The basic principle of developed VCR solution is to change the effective length of the connecting rod (and thereby the compression ratio) in two stages by several millimeters.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Journal Article

A European Regulatory Perspective towards a Euro 7 Proposal

2022-06-14
2022-37-0032
The implementation of emission standards has brought significant reductions in vehicle emissions in the EU, but road transport is still a major source of air pollution. Future emission standards will aim at making road vehicles as clean as possible under a wide range of driving conditions and throughout their complete lifetime. The current paper presents the methodology followed by the Consortium for ultra LOw Vehicle Emissions (CLOVE) to support the preparation of the Euro 7 proposal. As a first step, the emission performance of the latest-technology vehicles under various driving conditions was evaluated. Towards this direction, an emissions database was developed, containing data from a wide range of tests, both within and beyond the current RDE boundaries.
Technical Paper

On-Board Monitoring of Emissions in the Future Euro 7 Standard

2023-08-28
2023-24-0111
The proposed Euro 7 emission standard foresees that the emission behaviour of Euro 7 vehicles is monitored via an on-board monitoring (OBM) system. In Euro 7 vehicles, OBM systems will monitor the emissions of nitrogen oxides (NOX), ammonia (NH3) and particulate matter (PM) for every trip through a combination of measured and modelled data. Sensors employed to support on-board diagnostics (OBD) in current vehicles may be used to support OBM. According to the Euro 7 OBM concept presented in this paper, OBM will serve a dual purpose: the first is to warn the user of a vehicle about the need to perform repairs on the engine or the pollution control systems when these are needed. If these repairs are not performed in a timely manner, the OBM system will be able to ultimately prevent engine restart, akin to the existing low-reagent driver warning system in some compression ignition vehicles. The second purpose of OBM is to monitor the compliance of vehicle types with the emission limits.
Technical Paper

Real-time Multi-Layer Predictive Energy Management for a Plug-in Hybrid Vehicle based on Horizon and Navigation Data

2024-04-09
2024-01-2773
Plug-In Hybrid Vehicles (PHEV) have been of significant importance recently to comply with future CO2 and pollutant emissions limit. However, performance of these vehicles is closely related to the energy management strategy (EMS) used to ensure minimum fuel consumption and maximize electric driving range. While conventional EMS concepts are developed to operate in wide range of scenarios, this approach could potentially compromise the fuel consumption benefit due to the omission of route and traffic information. With the advancements in the availability of real-time traffic, navigation and driving route information, the EMS can be further optimized to extract the complete potential of a PHEV. In this context, this paper presents application of predictive energy management (PEM) functionalities combined with information such as live traffic data to reduce the fuel consumption for a P1/P3 configuration PHEV vehicle.
Technical Paper

Sustainable Propulsion in a Post-Fossil Energy World: Life-Cycle Assessment of Renewable Fuel and Electrified Propulsion Concepts

2024-07-02
2024-01-3013
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. To date, extensive research has been conducted on the CO2 life cycle analysis of mobile propulsion systems. However, achieving absolute net-zero CO2 emissions requires the adjustment of the relevant key performance indicators for the development of mobile propulsion systems. In this context, research is presented that examines the ecological and economic sustainability impacts of a hydrogen-fueled mild hybrid vehicle, a hydrogen-fueled 48V hybrid vehicle, a methanol-fueled 400V hybrid vehicle, a methanol-to-gasoline-fueled plug-in hybrid vehicle, a battery electric vehicle, and a fuel cell electric vehicle. For this purpose, a combined Life-Cycle Assessment (LCA) and Life-Cycle Cost Assessment was performed for the different propulsion concepts.
X