Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Driver Classification of Shifting Strategies Using Machine Learning Algorithms

2020-09-15
2020-01-2241
The adequate dimensioning of drive train components such as gearbox, clutch and driveshaft presents a major technical task. The one of manual transmissions represents a special significance due to the customer’s ability of inducing high force, torque and thermic energy into the powertrain through direct mechanical interconnection of gearstick, clutch pedal and gearbox. Out of this, the question about how to capture behavior and strain of the components during real operation, as well as their objective evaluation evolves. Furthermore, the gained insights must be considered for designing and development. As a basis for the examination, measuring data from imposing driving tests are adduced. Therefore, a trial study has been conducted, using a representative circular course in the metropolitan area of Stuttgart, showing the average German car traffic. The more than 40 chosen drivers constitute the average driver in Germany with respect to age, gender and annual mileage.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Journal Article

Consumption Optimization in Battery Electric Vehicles by Autonomous Cruise Control using Predictive Route Data and a Radar System

2013-04-08
2013-01-0984
This paper presents an autonomous cruise control for battery electric vehicles. The presented approach is based on the usage of predictive route data which is extracted out of a digital map and a wide range radar system in order to capture vehicles in front. By using the predictive route data and the information of the radar system, the autonomous cruise control can control the vehicle's speed over a wide range of driving situations without any driver interaction. The main aim of the presented autonomous cruise control is to optimize the battery electric vehicle's energy consumption. The main idea is to use predictive route data in order to calculate a consumption optimal vehicle speed trajectory by means of online optimization. The benefits of the autonomous cruise control are shown by means of real test drives and measured data evaluation.
Journal Article

Unsteady Aerodynamic Properties of a Vehicle Model and their Effect on Driver and Vehicle under Side Wind Conditions

2011-04-12
2011-01-0154
In this paper the effect of aerodynamic modifications that influence the unsteady aerodynamic properties of a vehicle on the response of the closed loop system driver-vehicle under side wind conditions is investigated. In today's aerodynamic optimization the side wind sensitivity of a vehicle is determined from steady state values measured in the wind tunnel. There, the vehicle is rotated with respect to the wind tunnel flow to create an angle of attack. In this approach however, the gustiness that is inherent in natural wind is not reproduced. Further, unsteady forces and moments acting on the vehicle are not measured due to the limited dynamic response of the commonly used wind tunnel balances. Therefore, a new method is introduced, overcoming the shortcomings of the current steady state approach. The method consists of the reproduction of the properties of natural stochastic crosswind that are essential for the determination of the side wind sensitivity of a vehicle.
Technical Paper

Noise analysis and modeling with neural networks and genetic algorithms

2000-06-12
2000-05-0291
The aim of the project is to reliably identify the set of constructive features responsible for the highest noise levels in the interior of motor vehicles. A simulation environment based on artificial intelligence techniques such as neural networks and genetic algorithms has been implemented. We used a system identification approach in order to approximate the functional relationship between the target noise series and the sets of constructive parameters corresponding to the cars. The noise levels were measured with a microphone positioned on the driver''s chair, and corresponded to a variation of the engine rotation of 600-900 rot/min. The database includes 45 different cars, each described by vectors of 67 constructive features.
Technical Paper

Advanced Lighting Simulation (ALS) for the Evaluation of the BMW System Adaptive Light Control (ALC)

2002-07-09
2002-01-1988
The Advanced Lighting Simulation (ALS) is a development tool for systematically investigating and optimizing the Adaptive Light Control (ALC) system to provide the driver with improved headlamps and light distributions. ALS is based on advanced CA-techniques and modern validation facilities. To improve night time traffic safety the BMW lighting system ALC has been developed and optimized with the help of ALS. ALC improves the headlamp illumination by means of continuous adaptation of the headlamps according to the current driving situation and current environment. BMW has already implemented ALC prototypes in real vehicles to demonstrate the advantages on the real road.
Technical Paper

Influence of Forces on Comfort Feeling in Vehicles

2000-06-06
2000-01-2171
When investigating the posture comfort in vehicles two important influencing factors can be distinguished: In order to evaluate these influences a combined laboratory-field-experiment was carried out. A real car was equipped with cameras to record the body posture and the joint angles. The static forces exerted by the driver on his contact points were recorded in a corresponding mock-up. The forces to maintain the body posture were calculated. The following results were found:
Technical Paper

Electric Vehicles in the Gulf Region: Performance and Potential

2015-04-14
2015-01-1685
This paper addresses the performance and potential of using electric vehicles in the Gulf Arab states. Based on a survey executed in Salalah, Oman, a representative test driving cycle has been set up. This cycle is the first of its kind for this region, where it is driven with a vehicle provided with special measurement equipment to log important values, e.g. vehicle's speed and position, temperatures and solar irradiance. More than 40 test drives are performed to obtain a representative driver profile. The driving cycle and driver profile are used in a simulation model which is capable of simulating the energy consumption for internal combustion engine or electric motor propulsion systems. The simulation model which contains detailed models for the driver, driving cycle, vehicle components and its dynamics is validated and used to compare the consumed energy for the two different propulsion systems.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
X