Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Electrochemical Characterization of Coated Self-Piercing Rivets for Magnesium Applications

2016-01-01
2015-01-9085
This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
Journal Article

A Novel Approach to Create Dimensional Tolerance Requirements from Expert Knowledge

2017-03-28
2017-01-0241
Geometric Dimensioning and Tolerancing is used to describe the allowed feature variations regarding the product design. Tolerance specification is important in many stages of all phases on product development. The product development engineering need to define the symbols to use on the Feature Control Frame of every component. Since the component function has an increment on its complexity year over year, it is not trivial to define those symbols anymore. The determination of dimensional tolerance shall be preceded by careful specification of the types of tolerance and symbols that will be applied in controlled features. Poor tolerance specifications can increase the production cost, require late product changes or lead to legal issues.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Journal Article

Multidisciplinary Optimization of Auto-Body Lightweight Design Using Hybrid Metamodeling Technique and Particle Swarm Optimizer

2018-04-03
2018-01-0583
Because of rising complexity during the automotive product development process, the number of disciplines to be concerned has been significantly increased. Multidisciplinary design optimization (MDO) methodology, which provides an opportunity to integrate each discipline and conduct compromise searching process, is investigated and introduced to achieve the best compromise solution for the automotive industry. To make a better application of MDO, the suitable coupling strategy of different disciplines and efficient optimization techniques for automotive design are studied in this article. Firstly, considering the characteristics of automotive load cases which include many shared variables but rare coupling variables, a multilevel MDO coupling strategy based on enhanced collaborative optimization (ECO) is studied to improve the computational efficiency of MDO problems.
Journal Article

Systems Engineering Approach for Voice Recognition in the Car

2017-03-28
2017-01-1599
In this paper, a systems engineering approach is explored to evaluate the effect of design parameters that contribute to the performance of the embedded Automatic Speech Recognition (ASR) engine in a vehicle. This includes vehicle designs that influence the presence of environmental and HVAC noise, microphone placement strategy, seat position, and cabin material and geometry. Interactions can be analyzed between these factors and dominant influencers identified. Relationships can then be established between ASR engine performance and attribute performance metrics that quantify the link between the two. This helps aid proper target setting and hardware selection to meet the customer satisfaction goals for both teams.
Technical Paper

Evaluating Statistical Error in Unsteady Automotive Computational Fluid Dynamics Simulations

2020-04-14
2020-01-0692
Among the many sources of uncertainty in an unsteady computational fluid dynamics (CFD) simulation, the statistical uncertainty in the mean value of a fluctuating quantity (for example, the drag coefficient) is of practical importance for vehicle design and development. This uncertainty can be reduced by extending the simulation run length, however, this increases the computational cost and leads to longer turnaround times. Moreover, it is desirable to be able to run an unsteady CFD simulation for the minimum amount of time necessary to reach an acceptable amount of uncertainty in the quantity of interest. This work assesses several methods for calculating the uncertainty in the mean of an unsteady signal. Simulated noise is used to validate the methods, and evaluation is carried out using signals from CFD simulations of realistic vehicle geometries. Calculating the uncertainty in the difference between two signals is also discussed.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Parameter Design Based FEA Correlation Studies on Automotive Seat Structures

2008-04-14
2008-01-0241
In recent years, the design of automotive components and assemblies have resulted in an over-reliance on advanced CAE tools especially the Finite Element Analysis. An emphasis on cost reduction and commonization of components in automotive industry has made it necessary to use the CAE tools in innovative ways. Use of FEA as a effective product development tool can be greatly enhanced if it provides a high degree of correlation with physical tests, thereby greatly limiting the investment in expensive prototypes and testing. This paper will discuss a robustness based methodology to realize effective correlation of finite element models with actual physical tests on automotive seat structure assembly, at a component, sub-system, and systems level. Based on a parameter design approach, the various factors that affect the degree of correlation between CAE models and physical tests will be described.
Journal Article

Test Correlation Framework for Hybrid Electric Vehicle System Model

2011-04-12
2011-01-0881
A hybrid electric vehicle (HEV) system model, which directly simulates vehicle drive cycles with interactions among driver, environment, vehicle hardware and vehicle controls, is a critical CAE tool used through out the product development process to project HEV fuel economy (FE) capabilities. The accuracy of the model is essential and directly influences the HEV hardware designs and technology decisions. This ultimately impacts HEV product content and cost. Therefore, improving HEV system model accuracy and establishing high-level model-test correlation are imperative. This paper presents a Parameter Diagram (P-Diagram) based model-test correlation framework which covers all areas contributing to potential model simulation vs. vehicle test differences. The paper describes each area in detail and the methods of characterizing the influences as well as the correlation metrics.
Journal Article

Systems Engineering Excellence Through Design: An Integrated Approach Based on Failure Mode Avoidance

2013-04-08
2013-01-0595
Automotive Product Development organisations are challenged with ever increasing levels of systems complexity driven by the introduction of new technologies to address environmental concerns and enhance customer satisfaction within a highly competitive and cost conscious market. The technical difficulty associated with the engineering of complex automotive systems is compounded by the increase in sophistication of the control systems needed to manage the integration of technology packages. Most automotive systems have an electro-mechanical structure with control and software features embedded within the system. The conventional methods for design analysis and synthesis are engineering discipline focused (mechanical, electrical, electronic, control, software).
Technical Paper

Virtual Verification of Wrecker Tow Requirements

2020-04-14
2020-01-0766
Under various real-world scenarios, vehicles can become disabled and require towing. OEMs allow a few options for vehicle wrecker towing that include wheel lift tow using a stinger or towing on a flatbed. These methods entail multiple loading events that need to be assessed for damage to the towed vehicle. OEMs have several testing and evaluation methods in place for those scenarios with majority requiring physical vehicle prototypes. Recent focus to reduce product development time and cost has replaced the need for prototype testing with analytical verification methods. In this paper, the CAE method involving multibody dynamic simulation (MBDS) as well as finite element analysis (FEA) of vehicle flatbed operation, winching onto a flatbed, and stinger-pull towing are discussed.
Technical Paper

Vehicle Glass Design Optimization Using a CFD/SEA Model

2007-05-15
2007-01-2306
A new methodology to predict vehicle interior wind noise using CFD results has been developed. The CFD simulation replaces wind tunnel testing for providing flow field information around vehicle greenhouse. A loadcase model based on the CFD results is used to excite an SEA vehicle model. This new approach has been demonstrated on a production vehicle with success for the frequency range of 250-10K Hz. The CAE prediction of interior wind noise agrees within 0.2 sones from wind tunnel testing. The model has been used to evaluate wind noise performance with different door glass design parameters. A glass thickness change from 3.8 mm to 4.8 mm results in 1.1 sones improvement, which agrees well to 1.4 sones improvement from testing. Laminated glass with about 3 times higher damping results in 2.5 sones improvement. This methodology using CFD results can be used in the early stage of product development to impact designs.
Technical Paper

Numerical and experimental analysis of residual stresses at welding processes

2007-11-28
2007-01-2727
Residual stress can affect directly the quality of products as result of manufacturing process, for example, the vehicular assembly of sheet metal parts, where the welding of thin plates is applied. One method that can prevent it is the use of CAE which helps to understand the mechanism of welding effects using finite element methods. Using this tool is possible to evaluate the impact of the welding process in order to reduce time and costs during the product development. It helps also to foresee future durability/customer usage problems during the product life.
Technical Paper

A Thermoviscoplastic FE Model for the Strain Prediction in High Temperature, Thermal Cycling Applications for Silicon Molybdenum Nodular Cast Iron

1998-02-23
980697
The design of components for high temperature, thermal cycling situations has traditionally been a challenging problem because the analysis must compensate for the non-linear behavior of the material. One example for automotive applications is the exhaust manifold, where temperatures may reach 900°C during thermal cycling. Fatigue failure and excessive deformation of these components must be analyzed with thermoviscoplastic models. A Finite Element (FE) model is developed to simulate the material behavior at high temperature, thermal cycling conditions. A specimen of Silicon Molybdenum Nodular Cast Iron (4% Si, 0.8% Mo) is cycled between maximum temperatures of 500°C and 960°C while the stress is measured with respect to time. The model predictions for stress are compared to the experimental results for two rates of thermal cycling. The analysis is conducted with and without creep effects to understand its contribution to the overall strain.
Technical Paper

The Effect of Friction Modifiers on the Low-Speed Friction Characteristics of Automatic Transmission Fluids Observed with Scanning Force Microscopy

1998-02-23
981099
The effect of friction modifiers on the low-speed frictional properties of automatic transmission fluids (ATFs) was investigated by scanning force microscopy (SFM). A clutch lining material was covered by a droplet of test ATF, and a steel tip was scanned over the sample. The scanning speeds were varied from 0.13 to 8.56 mm /sec, and the frictional force was deduced from the torsion of the SFM cantilever. A reduction in dynamic friction due to the addition of the friction modifier was clearly observed over the entire speed range. This indicates that the boundary lubrication mechanism is dominant under this condition, and therefore surface-active friction modifiers can effectively improve the frictional characteristics. The friction reduction was more pronounced at lower sliding speeds. Thus addition of friction modifiers produced a more positive slope in the μ-ν (friction vs. sliding speed) plots, and would contribute to make wet clutch systems less susceptible to shudder vibrations.
Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
X