Refine Your Search

Topic

Author

Search Results

Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

H-due: Electric-Hydrogen Powered Personal Mobility Concept Vehicle

2009-04-20
2009-01-0090
H-due, a concept of light electric vehicle devoted to personal mobility, will here be presented. The main goals involve the creation of a low-noise, user-friendly, zero-emission vehicle, with a pleasant style. Its main features include high payload/vehicle mass ratio, electric energy supplied either by batteries or by fuel cell, innovative style aimed at transporting a driver and a passenger, chassis design to minimize cost of production, variable wheelbase. The paper presents the main ideas on which the vehicle design was based and summarizes the most important results obtained.
Technical Paper

Design and Development of an In-Hub Motors Hybrid Vehicle for Military Applications

2010-04-12
2010-01-0659
The paper focuses on the advantages of the diesel electric traction applied to military vehicles. In recent years electric cars developed mainly to reduce the dependence on fossil fuels and cut down the emissions. The reduction of fuel consumption, important for civil vehicles above all to reduce emissions and to lower costs, is important also for the military in order to increase vehicle autonomy. In addition, the interest for hybrid electric military vehicles is linked with vehicle packaging flexibility, on board power generation and stealth potential related to their abilities of silent movement. Among many possible layouts the optimum is considered to be hub mounted drive motors in each wheel [ 1 ]. This study shows the development of a demonstrator of an hybrid electric 4×4 military vehicle. It was carried out for a future extension of the technology to a 8×8 armoured vehicle.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

H-ergo: Electric-Hydrogen Powered Personal Mobility Concept Vehicle

2010-04-12
2010-01-0031
H-ergo, a concept of light electric vehicle devoted to personal mobility, will here be presented. H-ergo is a low-noise, user-friendly, zero-emission vehicle, with a pleasant style. Its main features include high payload/vehicle mass ratio, electric energy supplied either by batteries or by fuel cell, ergonomic style in order to transport a driver or a person whit mobility problems, chassis design to minimize cost of production, variable wheelbase (through electric actuator). The paper presents the main ideas on which the vehicle design was based and summarizes the most important results obtained.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Improvement of Lap-Time of a Rear Wheel Drive Electric Racing Vehicle by a Novel Motor Torque Control Strategy

2017-03-28
2017-01-0509
This paper presents a novel strategy for the control of the motor torques of a rear wheel drive electric vehicle with the objective of improving the lap time of the vehicle around a racetrack. The control strategy is based upon increasing the size of the friction circle by implementing torque vectoring and tire slip control. A two-level nested control strategy is used for the motor torque control. While the outer level is responsible for computing the desired corrective torque vectoring yaw moment, the inner level controls the motor torques to realize the desired corrective torque vectoring yaw moment while simultaneously controlling the wheel longitudinal slip. The performance of the developed controller is analyzed by simulating laps around a racetrack with a non-linear multi-body vehicle model and a professional human racing driver controller setting.
Technical Paper

OPTIBODY: A New Structural Design Focused in Safety

2013-11-27
2013-01-2760
With electric vehicles becoming more and more popular, the classic “general purpose” vehicle concept is changing to a “dedicated vehicle” concept. Light trucks for goods delivery in cities are one of the examples. The European vehicle category L7e fits perfectly in the low power, low weight vehicle requirements for an electric light truck for goods delivery. However, the safety requirements of this vehicle category are very low and their occupants are highly exposed to injuries in the event of a collision. The European Commission co-funded project OPTIBODY (Optimized Structural components and add-ons to improve passive safety in new Electric Light Trucks and Vans) is developing a new structural concept based on a chassis, a cabin a several add-ons. The add-ons will provide improved protection in case of frontal, side and rear impact.
Technical Paper

Methodology and Application on Load Monitoring Using Strain-Gauged Bolts in Brake Calipers

2022-03-29
2022-01-0922
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system.
Technical Paper

Urban Vehicle Design Competition - History, Progress, Development

1972-02-01
720497
The Urban Vehicle Design Competition was inspired by the success of the Clean Air Car Race and the Great Electric Car Race. The academic community recognized the tremendous educational value of these events, and encouraged development of UVDC from its inception. The project was designed by engineering students to benefit students throughout North America. The rules of the competition include technical paper requirements that make the competition extremely attractive to professors who wish to build a course around this theme. The response of more than 2000 engineering students at 80 universities throughout the United States and Canada has indicated the success of the structure of the competition. The first major objective of the UVDC project has been met. Ninety-three teams throughout the country entered the UVDC design portion of the contest. The second portion of the project is the prototype contest of August 1972.
Technical Paper

Effect of Temperature Distribution on the Predicted Cell Lifetimes for a Plug-In Hybrid Electric Vehicle Battery Pack

2022-03-29
2022-01-0712
Monitoring and preserving state-of-health of high-voltage battery packs in electrified road vehicles currently represents an open and growing research topic. When predicting high-voltage battery lifetime, most current literature assumes a uniform temperature distribution among the different cells of the pack. Nevertheless, temperature has been demonstrated having a key impact on cell lifetime, and different cells of the same battery pack typically exhibit different temperature profiles over time, e.g. due to their position within the pack. Following these considerations, this paper aims at assessing the effect of temperature distribution on the predicted lifetime of cells belonging to the same battery pack. To this end, a throughput-based numerical cell ageing model is firstly selected due to its reasonable compromise between accuracy and computational efficiency.
Technical Paper

MPC-Based Cooperative Longitudinal Control for Vehicle Strings in a Realistic Driving Environment

2023-04-11
2023-01-0689
This paper deals with the energy efficiency of cooperative cruise control technologies when considering vehicle strings in a realistic driving environment. In particular, we design a cooperative longitudinal controller using a state-of-the-art model predictive control (MPC) implementation. Rather than testing our controller on a limited set of short maneuvers, we thoroughly assess its performance on a number of regulatory drive cycles and on a set of driving missions of similar length that were constructed based on real driving data. This allows us to focus our assessment on the energetic aspects in addition to testing the controller’s robustness. The analyzed controller, based on linear MPC, uses vehicle sensor data and information transmitted by the vehicle driving the string to adjust the longitudinal trajectory of the host vehicle to maintain a reduced inter-vehicular distance while simultaneously optimizing energy efficiency.
Technical Paper

Optimal Torque-Vectoring Control Strategy for Energy Efficiency and Vehicle Dynamic Improvement of Battery Electric Vehicles with Multiple Motors

2023-04-11
2023-01-0563
Electric vehicles comprising multiple motors allow the individual wheel torque allocation, i.e. torque-vectoring. Powertrain configurations with multiple motors provide additional degree of freedom to improve system level efficiencies while ensuring handling performances and active safety. However, most of the works available on this topic do not simultaneously optimize both vehicle dynamic performance and energy efficiency while considering the real-time implementability of the controller. In this work, a new and systematic approach in designing, modeling, and simulating the main layers of a torque-vectoring control framework is introduced. The high level control combines the actions of an adaptive Linear Quadratic Regulator (A-LQR) and of a feedforward controller, to shape the steady-state and transient vehicle response by generating the reference yaw moment. A novel energy efficient torque allocation method is proposed as a low level controller.
Technical Paper

Driveline Backlash and Half-shaft Torque Estimation for Electric Powertrains Control

2018-04-03
2018-01-1345
The nonlinear behavior of automotive powertrains is mainly due to the presence of backlash between engaging components. In particular, during tip-in or tip-out maneuvers, backlash allows the generation of impacts that negatively affect the vehicle NVH performance. Due to the faster response of electric motors with respect to conventional internal combustion engines, this problem is even more critical for electric vehicles. In order to employ numerical optimal control methods for backlash compensation, the system states have to be known. In this paper, an electric powertrain is modeled as a two-mass oscillator with lumped backlash. This model estimates the system states when in no-contact mode while a Kalman filter that relies only on commonly available speed measurements is active in the contact phase. The powertrain model is validated using experimental data collected during vehicle testing and the online estimated half-shaft torque is shown.
Technical Paper

Next Generation HEV Powertrain Design Tools: Roadmap and Challenges

2019-10-22
2019-01-2602
Hybrid electric vehicles (HEVs) represent a fundamental step in the global evolution towards transportation electrification. Nevertheless, they exhibit a remarkably complex design environment with respect to both traditional internal combustion engine vehicles and battery electric vehicles. Innovative and advanced design tools are therefore crucially required to effectively handle the increased complexity of HEV development processes. This paper aims at providing a comprehensive overview of past and current advancements in HEV powertrain design methodologies. Subsequently, major simplifications and limits of current HEV design methodologies are detailed. The final part of this paper defines research challenges that need accomplishment to develop the next generation HEV architecture design tools.
Journal Article

A Reverse-Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

2020-06-30
2020-37-0021
Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant powertrain data required for fuel consumption-oriented hybrid electric vehicle (HEV) modelling. The estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency, gearshift thresholds, torque converter performance diagrams, engine fuel consumption map and front/rear hydraulic brake torque distribution. This activity provides a list of dedicated experimental tests, to be carried out on road or on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm.
X