Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Flexible Fuel and manufacturing dispersion

2008-10-07
2008-36-0310
Back to the non Flex Fuel vehicles, the knock control system was designed and calibrated to absorb differences between engines (mainly compression ratio) and to protect the engine against knock damage (a correction up to 4 degrees BTDC was usually enough). But now, two new variables get in the scene: Flexible Fuel strategy, working from E22 to E100 (all blends in between) and small displacement (1.0 liter) high compression ratio engines. In this new scenario the system must be capable of correcting all spark advance differences, once knock control system acts as a safety feature, protecting the engine even if the fuel learning shows some deviation. In addition to that, we have the compression ratio variation between minimum and maximum limits. Since the engine is small (as well its combustion chamber), each tenth of a millimeter difference during manufacturing process, results in an important final compression ratio variation.
Technical Paper

Flexible Fuel meets high compression engines: The knock control challenge

2008-10-07
2008-36-0309
Since the appearance of the first flexible fuel vehicle back in 2003, many improvements have been done in order to deliver a more reliable and more efficient engine package. The increase in compression ratio is one of the mechanisms used in performance pursuit and to guarantee the engine durability meeting fuel economy requirements, running with fuels from regular E22 to E100 under high compression, many challenges were faced. The pre-ignition running at low engine speeds and mid to high loads had to be controlled, maintaining a reasonable driveability. Increasing the engine speed across its useful band, a special knock event could occur. It is special because results in peak pressures up to 15.000 kPa, named “single strong knock” and is present mainly at highest closed-loop load operation. In addition of that, design limitation was the cause for cylinder #04 low sensitivity. This characteristic narrowed the spark correction band resulting in destructive knock activity.
X