Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Cracking Stopping in the Bondline of Adhesively Bonded Composite Adherents by Means of a Mechanical Fastener: Numerical and Experimental Investigation

2015-09-15
2015-01-2611
The use of composite materials in aircraft manufactures increases more and more with the need of light weight and efficient airplanes. Combining composite materials with an appropriate joining method is one of the primordial ways of exploiting its light weight potential. Since the widely-established mechanical fastening, which originally, was developed for metallic materials, is not a suitable joining method for composite materials because of its low bearing strength, the adhesively bonding technology might be an appropriate alternative. However, adhesively bonding in the aircraft manufacturing, especially for joining of primary structures is liable to certification requirements, such as testing of every bond up to limit load before the operation begins or non-destructive testing of every bond before the operation begins as proof of the joint characteristics, which cannot be fulfilled with the current state of the art.
Journal Article

High Accuracy Mobile Robotic System for Machining of Large Aircraft Components

2016-09-27
2016-01-2139
A mobile robotic system is presented as a new approach for machining applications of large aircraft components. Huge and heavy workshop machines are commonly used for components with large dimensions. The system presented in this paper consists of a standard serial robot kinematics and a mobile platform as well as a stereo camera system for optical measurements. Investigations of the entire system show that the mechanical design of the mobile platform has no significant influence on the machining accuracy. With mobile machines referencing becomes an important issue. This paper introduces an optical method for determining the position of the mobile platform in relation to the component and shows its accuracy limits. Furthermore, a method for increasing the absolute accuracy of the robots end-effector with help of stereo camera vision is presented.
Journal Article

Real Time Pose Control of an Industrial Robotic System for Machining of Large Scale Components in Aerospace Industry Using Laser Tracker System

2017-09-19
2017-01-2165
The high demand of efficient large scale machining operations by concurrently decreasing operating time and costs has led to an increasing usage of industrial robots in contrast to large scaled machining centers. The main disadvantage of industrial robots used for machining processes is their poor absolute accuracy, caused by the serial construction, resilience of gearings and sensitivity for temperature changes. Additionally high process forces that occur during machining of CFRP structures in aerospace industry lead to significant path errors due to low structural stiffness of the robot kinematic. These errors cannot be detected by means of motor encoders. That is why calibration processes and internal control laws have no effect on errors caused by elastic deformation. In this research paper an approach for increasing the absolute accuracy of an industrial milling robot with help of a Laser Tracker system during machining tasks will be presented.
Technical Paper

Accuracy Analysis and Error Source Identification for Optimization of Robot Based Machining Systems for Aerospace Production

2016-09-27
2016-01-2137
Strong market growth, upcoming global competition and the impact of customer-requirements in aerospace industry demand for more productive, flexible and cost-effective machining systems. Industrial robots have already demonstrated their advantages in smart and efficient production in a wide field of applications and industries. However, their use for machining of structural aircraft components is still obstructed by the disadvantage of low absolute accuracy and adverse reaction to process loads. This publication demonstrates and investigates different methods for performance assessment and optimization of robot-based machining systems. For conventional Cartesian CNC machining systems several methods and guidelines for performance assessment and error identification are available. Due to the attributes of a common 6-axis-robot serial kinematics these methods of decoupled and separated analysis fail, especially concerning optimization of the system.
Technical Paper

Mobile Laser Trackers for Aircraft Manufacturing: Increasing Accuracy and Productivity of Robotic Applications for Large Parts

2019-03-19
2019-01-1368
The demand for higher production rates of large parts in aircraft industry requests more flexible manufacturing solutions. High-accurate mobile robots show a promising alternative in comparison with high-invest special machines. With mobile robot-based solutions processes can be executed simultaneously which increases the productivity significantly. However, the freedom of mobility results in insufficient positioning accuracy of these machines. Hence fast and accurate referencing processes are required to achieve cost-effectiveness and meet production tolerances. In this publication a Mobile Laser Tracker (MLT) system and a holistic approach for future manufacturing systems with mobile robots will be introduced and discussed.
Journal Article

Accuracy Analysis for a Flow Line Process using a Mobile Holding Fixture for Machining CFRP Components

2022-03-08
2022-01-0041
The aerospace sector is challenged to produce airplanes more efficiently and resiliently in the future. This leads to an increasing demand for improving productivity and flexibility as well as providing solutions for sustainable developments. A bottleneck in production is the machining of large-scale components. Apart from the machining tasks, non-productive operations like fixture adjustment, component handling, referencing and localization are performed within the machining station and can constitute up to 50% of the overall workload. In the UniFix project, Fraunhofer IFAM is participating in the development of a mobile fixture system for large-scale aircraft components, like vertical tail plane and landing flap components of the single aisle aircrafts.
X