Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Integrated Vehicle Electronics - An Overview of Its Potential

1986-10-20
861031
New methods are required for implementing the proliferation and sophistication of electronic controls and features to meet the customer's quality expectations. Vehicle electronic integration provides a potential solution for reconciling the seemingly contradictory objectives of high quality at reasonable cost. No module can be considered independently with this global approach. OEM subsystem and component suppliers' devices will need to play in concert with the overall vehicle's electrical/electronic strategy. Some new, separately packaged electronic features may eventually be assimilated within the framework of other electronic controllers.
Technical Paper

Active Bolster for Side Impact Protection

2008-04-14
2008-01-0191
This paper discusses the simulation based methodology for designing and developing a deployable vehicle door interior trim, an Active Side Bolster (ASB), and its interaction (in FEA simulation) with an ATD in side impact crash test modes like FMVSS2141 Oblique Pole, IIHS2 and LINCAP. The FEA models, especially with the complexity of the full vehicle structure, the ATDs3 and the airbags, require extensive correlation using vehicle tests. A methodology is outlined here to ensure that the model results could be used to generate FEA ATD assessments without a significant numerical contamination of the results. These correlated FEA models for side impact vehicle tests and ATDs were used to simulate various side impact crash test conditions; such as IIHS barrier, the FMVSS-214 Oblique Pole and LINCAP. The ATD responses from the baseline vehicle FEA models and those modified with the addition of an ASB in the door shows improvement in assessment values due to the introduction of the ASB.
Technical Paper

Analytical Techniques for Designing Riding Quality Into Automotive Vehicles

1967-02-01
670021
This paper describes techniques that predict and analyze dynamic response of vehicles traversing random rough surfaces. Road irregularities are statistically classified by frequency and amplitude distribution. This classification determines the nature of random inputs to mathematical vehicle models and allows computer prediction of dynamic response of a simulated vehicle. Once inputs and models are defined, parametric analysis with output criteria specified statistically can be performed. This allows prediction of vehicle riding quality and evaluation of design concepts. Statistical analysis of accelerometer measurements on actual vehicles permits verification of the design process and meaningful comparison between vehicles.
Technical Paper

Chrysler's Versatile 2.2 Liter Fuel Injection Controller

1984-09-01
841249
Using an evolutionary design process, Chrysler has developed a multi-purpose fuel injection controller which goes well beyond simply delivering fuel. Designed with efficiency in mind, this microprocessor based system brings sophisticated technology to the automobile in a reliable and serviceable form.
Technical Paper

CAE Applications in the Automotive Industry-The Use of CAD for Vehicle Packaging and Master Drafts

1985-02-01
850446
Computer-aided engineering (CAE) is generally recognized as an important method of improving productivity. One of the major benefits of this technology has been to reduce the amount of manual labor spent analyzing changes made to vehicle designs. By using existing data, computer-aided design (CAD) can be used to co-ordinate the spatial relationships of the driver, passengers, engines, suspensions, tires, driver controls, and other body and chassis components. Special files containing a specific set of user-defined CAD language instructions, referred to as macros, are discussed and illustrated. Also included are tire clearance studies and master reference vehicle dimension files.
Technical Paper

Application of Design and Development Techniques for Direct Injection Spark Ignition Engines

1999-03-01
1999-01-0506
Gasoline direct injection technology is receiving increased attention among automotive engineers due to its high potential to reach future emission and fuel economy goals. This paper reports some of the design and development techniques in use at Chrysler as applied to four-stroke Direct Injection Spark Ignition (DISI) engines. The spray characteristics of Chrysler's single-fluid high-pressure injector are reported. Tools used in the design process are identified. Observations of the in-cylinder fuel/air mixing process using laser diagnostic techniques and Computational Fluid Dynamics (CFD) are described. Finally, combustion and emissions characteristics using Design of Experiment (DoE) tests are presented.
X