Refine Your Search

Topic

Author

Search Results

Journal Article

Lab Evaluation and Comparison of Corrosion Performance of Mg Alloys

2010-04-12
2010-01-0728
More Mg alloys are being considered for uses in the automotive industry. Since the corrosion performance of Mg alloy components in practical service environments is unknown, long term corrosion testing at automotive proving grounds will be an essential step before Mg alloy components can be implemented in vehicles. However, testing so many Mg alloy candidates for various parts is labor intensive for the corrosion engineers at the proving grounds. This report presents preliminary results in evaluating corrosion performance of Mg alloys based on rapid corrosion and electrochemical tests in the lab. In this study, four Mg alloy candidates for transmission cases and oil pans: AE44, AXJ530, MRI153M and MRI230D were tested in the lab and at General Motors Corporation Milford Proving Ground and their corrosion results were compared.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

A DFSS Approach to Determine Automatic Transmission Gearing Content for Powertrain-Vehicle System Integration

2014-04-01
2014-01-1774
This investigation utilizes a DFSS analysis approach to determine automatic transmission gear content required to minimize fuel consumption for various powertrain - vehicle systems. L18 and L27 inner arrays with automatic transmission design and shift pattern constraint parameters were varied to determine their relative influence on fuel consumption. An outer noise array consisting of two vehicles with various engines, final drive ratios and legislated emissions test cycles was used to make a robust transmission selection based on minimizing fuel consumption. The full details of the DFSS analysis method and assumptions are presented along with a detailed examination of the results. With respect to transmission design parameters, parasitic spinloss and gear mesh efficiency were found to be most important followed by the number of gears. The DFSS analysis further revealed that unique transmission design formulations are potentially required for widely varying engines.
Journal Article

Design Optimization, Development and Manufacturing of General Motors New Battery Electric Vehicle Drive Unit (1ET35)

2014-04-01
2014-01-1806
The General Motors (GM) 1ET35 drive unit is designed for an optimum combination of efficiency, performance, reliability, and cost as part of the propulsion system for the 2014 Chevrolet Spark Electric Vehicle (EV) [1]. The 1ET35 drive unit is a coaxial transaxle arrangement which includes a permanent-magnet (PM) electric motor and a low loss single-planetary transmission and is the sole source of propulsion for the battery-only electric vehicle (BEV) Spark. The 1ET35 is designed with experience gained from the first modern production BEV, the 1996 GM EV1. This paper describes the design optimization and development of the 1ET35 and its electric motor that will be made in the United States by GM. The high torque density electric motor design is based on high-energy permanent magnets that were originally developed by GM in connection with the EV1 and GM bar-wound stator technology introduced in the 2Mode Hybrid electric transmission, used in the Chevrolet Volt and in GM eAssist systems.
Journal Article

An Algorithm for Identification of Locally Optimal Basins in Large Dimensions on a Multi-Model Response Surface

2015-04-14
2015-01-0480
Response Surface Models are often used as a surrogate for expensive black-box functions during optimization to reduce computational cost. Often, the CAE analysis models are highly nonlinear and multi-modal. A response surface approximation of such analysis as a result is highly multi-modal; i.e. it contains multiple local optima. A gradient-based optimizer working with such a response surface will often converge to the nearest local optimum. There does not exist any method to guarantee a global optima for non-convex multi-modal functions. For such problems, we propose an efficient algorithm to find as many distinct local optima as possible. The proposed method is specifically designed to work in large dimensions (about 100 ∼ 1000 design variables and similar number of constraints) and can identify most of the locally optimal solutions in a reasonable amount of time.
Journal Article

FEA Development of Spot Weld Modeling with Fracture Forming Limit Diagram(FFLD) Failure Criteria and Its Application to Vehicle Body Structure

2015-04-14
2015-01-1316
Spot weld separation in vehicle development stage is one of the critical phenomena in structural analyses regarding quasi-static test condition, like roof strength or seat/belt pull. It directly reduces structural performance by losing connected load path and occasionally introduces tearing on surrounding sheet metals. Traditionally many efforts have been attempted to capture parent metal ductile fracture, but not applied to spot weld separations in automotive FEA simulations. [1,2,3] This paper introduces how to develop FFLD failure criteria from a series of parametric study on ultra high strength sheet steel and deals with failure criteria around spot weld and parent metal. Once the fracture strains for sheet steels are determined, those developed values were applied to traditional spot weld coupon FEA simulations and tests. Full vehicle level roof strength FEA simulations on a typical automotive body structure were performed and verified to the physical tests.
Journal Article

Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions

2016-04-05
2016-01-1599
Aerodynamic vehicle design improvements require flow simulation driven iterative shape changes. The 3-D flow field simulations (CFD analysis) are not explicitly descriptive in providing the direction for aerodynamic shape changes (reducing drag force or increasing the down-force). In recent times, aerodynamic shape optimization using the adjoint method has been gaining more attention in the automotive industry. The traditional DOE (Design of Experiment) optimization method based on the shape parameters requires a large number of CFD flow simulations for obtaining design sensitivities of these shape parameters. The large number of CFD flow simulations can be significantly reduced if the adjoint method is applied. The main purpose of the present study is to demonstrate and validate the adjoint method for vehicle aerodynamic shape improvements.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Vehicle Spaciousness and Packaging Efficiency

2014-04-01
2014-01-0348
With the ever increasing pressure to improve the fuel economy of vehicles, there has been a corresponding interest in reducing the mass and size of vehicles. While mass is easily quantifiable, vehicle size, particularly the notion of “interior space” as perceived by the customer, is not. This paper explores different ways in which vehicle spaciousness can be quantified and explores new metrics based on customer verbatims. A novel ‘spaciousness calculator’ combines individual metrics to provide a singular holistic rating for spaciousness, useful during vehicle development. Beyond spaciousness, the paper discusses techniques to quantify the ‘packaging efficiency’ of a vehicle; this allows engineers to maximize the interior space for a given exterior size.
Journal Article

Methodology for Sizing and Validating Life of Brake Pads Analytically

2014-09-28
2014-01-2495
An area of brake system design that has remained continually resistant to objective, computer model based predictive design and has instead continued to rely on empirical methods and prior history, is that of sizing the brake pads to insure satisfactory service life of the friction material. Despite advances in CAE tools and methods, the ever-intensifying pressures of shortened vehicle development cycles, and the loss of prototype vehicle properties, there is still considerable effort devoted to vehicle-level testing on public roads using “customer-based” driving cycles to validate brake pad service life. Furthermore, there does not appear to be a firm, objective means of designing the required pad volume into the calipers early on - there is still much reliance on prior experience.
Technical Paper

Internal Heat Exchanger Design Performance Criteria for R134a and HFO-1234yf

2010-04-12
2010-01-1210
This paper will examine the various design and performance criteria for optimized internal heat exchanger performance as applied to R134a and HFO-1234yf systems. Factors that will be considered include pressure drop, heat transfer, length, internal surface area, the effect of oil in circulation, and how these factors impact the effectiveness of the heat exchanger. The paper describes the test facility used and test procedures applied. Furthermore, some design parameters for the internal heat exchanger will be recommended for application to each refrigerant.
Technical Paper

Fixed Weld Reduction Method for Optimal Spot Weld Pattern Design

2003-03-03
2003-01-1304
A new solution methodology for optimal spot-weld pattern design is presented. The objective of the optimization is to minimize the total number of welds in a structure while maintaining structural properties above a required level. Two approaches were developed, based on the representation of welds in a finite element model. In the approach ‘without ranking’ welds are represented in a traditional way, as rigid connections. In ‘with ranking’ approach welds are treated as elastic elements subjected to stresses and deformations under given loading conditions. The information on weld stress is utilized in the solution process to reduce the number of design variables and improve the quality of the solution. The applicability of the method to large automotive structures was demonstrated, as well as the capacity for optimization with respect to multiple load sets.
Technical Paper

Seal Cross-Section Design Automation and Optimization Using Isight

2016-04-05
2016-01-1397
New seal cross-section development is a very tedious and time consuming process if conventional analysis methods are used, as it is very difficult to predict the dimensions of the seal that will satisfy the sealing performance targets. In this study, a generic cross-section is defined and the design constraints are specified. Isight then runs the FEA model, utilizing a custom python script for post-processing. Isight then updates the dimensions of the seal and continues running analyses. Isight was run using two different design exploration techniques. The first was a design of experiments (DOE) to discover how the seal’s response varies with its dimensions. Then, after the analyst examined the results, Isight was run in optimization mode focusing on feasible design areas as determined from the DOE. Thus, after the initial model setup, the user can run the analyses in the background and only needs to interact with the program after Isight has determined a list of feasible designs.
Technical Paper

Electric Traction Motors for Cadillac CT6 Plugin Hybrid-Electric Vehicle

2016-04-05
2016-01-1220
The Cadillac CT6 plug-in hybrid electric vehicle (PHEV) power-split transmission architecture utilizes two motors. One is an induction motor type while the other is a permanent magnet AC (PMAC) motor type referred to as motor A and motor B respectively. Bar-wound stator construction is utilized for both motors. Induction motor-A winding is connected in delta and PMAC motor-B winding is connected in wye. Overall, the choice of induction for motor A and permanent magnet for motor B is well supported by the choice of hybrid system architecture and the relative usage profiles of the machines. This selection criteria along with the design optimization of electric motors, their electrical and thermal performances, as well as the noise, vibration, and harshness (NVH) performance are discussed in detail. It is absolutely crucial that high performance electric machines are coupled with high performance control algorithms to enable maximum system efficiency and performance.
Technical Paper

Minimum Cycle Requirement for SAE J2562

2014-04-01
2014-01-0073
SAE J2562 defines the background, apparatus and the directions for modifying the Scaled Base Load Sequence for a given a wheel rated load for a wheel design. This practice has been conducted on multiple wheel designs and over one hundred wheel specimens. All of the wheels were tested to fracture. Concurrently, some of the wheel designs were found to be unserviceable in prior or subsequent proving grounds on-vehicle testing. The remainder of the wheel designs have sufficient fatigue strength to sustain the intended service for the life of the vehicle. This is termed serviceable. Using the empirical data with industry accepted statistics a minimum requirement can be projected, below which a wheel design will likely have samples unserviceable in its intended service. The projections of serviceability result in a recommendation of a minimum cycle requirement for SAE J2562 Ballasted Passenger Vehicle Load Sequence.
Technical Paper

Integrated CAE Methods for Perceived Quality Assurance of Vehicle Outer Panels

2014-04-01
2014-01-0366
Oil canning and initial stiffness of the automotive roofs and panels are considered to be sensitive customer ‘perceived quality’ issues. In an effort to develop more accurate objective requirements, respective simulation methods are continuously being developed throughout automotive industries. This paper discusses a latest development on oil canning predictions using LS-DYNA® Implicit, including BNDOUT request, MORTAR contact option and with the stamping process involved, which resulted in excellent correlations especially when it comes to measurements at immediate locations to the feature lines of the vehicle outer panels. Furthermore, in pursuit of light-weighting vehicles with thinner roofs, a new CAE method was recently developed to simulate severe noise conditions exhibited on some of developmental properties while going through a car wash.
Technical Paper

Performance Equivalent Thickness of a Sound Insulation System

2013-05-13
2013-01-1981
Vehicle sound insulation systems, such as front of dash mats or carpet assemblies, etc. play a key role in controlling vehicle interior noise. However, dash and carpet insulators are often designed to have varied thickness in compliance with packaging constraints or to fulfill manufacturing clearance requirements. While it is obvious to NVH engineers that thinned-down areas would significantly affect the insulation performance, design engineers would benefit from a quick tool to flag any design details that may negatively impact the performance. This paper therefore proposes a concept called the performance equivalent thickness for the sound insulation system. The aim is to link acoustic performance of an insulator layer to a geometric measure so that the component performance can be easily monitored and preserved at the design stage.
Technical Paper

Moving from Single-Core to Multicore: Initial Findings on a Fuel Injection Case Study

2016-04-05
2016-01-0017
Several application developers are currently faced with the problem of moving a complex system from a single-core to a multicore platform. The problem encompasses several issues that go from modeling issues (the need to represent the system features of interest with sufficient accuracy) to analysis and optimization techniques, to the selection of the right formulations for constraints that relate to time. We report on the initial findings in a case study in which the application of interest is a fuel injection system. We provide an analysis on the limitations of AUTOSAR and the existing modeling tools with respect to the representation of the parameters of interest for timing analysis, and we discuss applicable optimization methods and analysis algorithms.
Technical Paper

Vehicle Mid-Frequency Response Using the Superelement Component Dynamic Synthesis Technique

2015-04-14
2015-01-1320
This paper presents the Component Dynamic Synthesis (CDS) superelement creation, which contains the loading frequency information and is much faster than the Component Mode Synthesis (CMS) method in the residual run. The Frequency Response Functions (FRFs) are computed using the direct frequency response method and the inversion of dynamic stiffness matrix is done using the singular value decomposition (SVD) method for every discrete frequency in the frequency range of interest. The CDS will be very efficient and economical for design of experiments and robust optimization, where hundreds of runs are required. The CDS super element can be used when there is a large number of residual runs on a very large vehicle model at higher end of the frequency range of study. For the residual analysis to run as fast as possible, all components, except very small ones, need to be converted into CDS superelements.
X