Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

FMVSS126 Electronic Stability Control Sine With Dwell Incomplete Vehicle Type 2 Analysis

2011-04-12
2011-01-0956
Incomplete vehicles are partially manufactured by an Original Equipment Manufacturer (OEM) and subsequently sold to and completed by a final-stage manufacturer. Section S8.8, Final-Stage Manufacturers and Alterers, of Federal Motor Vehicle Safety Standard (FMVSS) 126 states “Vehicle that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with Part 567 of this chapter, are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012, must comply with this standard.” The FMVSS 126 compliance of the completed vehicle can be certified in three ways: by the OEM provided no alterations are made to identified components (TYPE 1), conditionally by the OEM provided the final-stage manufacturer follows specific guidelines (TYPE 2), or by the final-stage manufacturer (TYPE 3).
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Technical Paper

Road Map and Technology Trends for Vehicle Engine Cooling Fan Speed Control

2011-04-12
2011-01-1334
This paper describes the rationale for the technology selection and speed control methods for electric cooling fans used for typical automotive applications, including most passenger cars and even some light duty truck s. Previous selection criteria were based primarily around cost, simplicity of implementation and reliability. However, the more recent focus toward fuel economy and optimization of energy consumption at a vehicle level has given a greater priority to the minimization of electrical power draw. Specifically, that need is addressed through both efficiency of the electric motor at any operating condition as well as providing a control method that delivers only the minimum electrical power to meet engine cooling and air conditioning requirements. This paper will explore the various control methods available, their relative merits and shortcomings and how they influence both FTP and real world fuel economy.
X