Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Technical Paper

Effects of Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2011-04-12
2011-01-0908
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries. The impact of these inhibitors on spark ignited fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the additive concentrations to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel; and, to show how the variation in the concentrations of the CIs impact the operation and performance of vehicles, specifically, the effects on intake valve deposit formation. Commercially available corrosion inhibitor packages for both gasoline and ethanol blended fuels, specifically E85 fuels, were studied for their chemical compositions, and their impact on valves for a port fuel injection (PFI) engine.
Technical Paper

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors and Fuel Detergents on Powertrain Intake Valve Deposits

2014-04-01
2014-01-1383
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution systems used for transportation of fuel from refineries. They are also used to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of the types of inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and to show how variation in concentration of components of CIs and detergents impact intake valve deposit formation.
Journal Article

Fuel Octane and Volatility Effects on the Stochastic Pre-Ignition Behavior of a 2.0L Gasoline Turbocharged DI Engine

2014-04-01
2014-01-1226
Classic, hot-spot induced pre-ignition is a phenomenon that has been observed in gasoline spark ignited engines over the past 60-70 years. With the development of turbocharged, direct-injected (DI) gasoline engines, a new pre-ignition phenomenon occurring at low engine speeds and high loads has been encountered. Termed Stochastic Pre-ignition (SPI), it has become a significant issue to address in allowing for the full potential of gasoline turbo DI technology to improve powertrain efficiency. Many researchers are studying all aspects of the causes of Stochastic Pre-ignition, including causes by oil, fuel and engine hardware systems. The focus of this specific research was to study the relationship of fuel octane and volatility to Stochastic Pre-ignition behavior utilizing a GM 2.0L Gasoline Turbocharged DI engine (LHU).
Technical Paper

Development of the Combustion System for the General Motors Fifth Generation “Small Block” Engine Family

2013-04-08
2013-01-1732
The fifth generation of General Motor's “Small Block” 90-degree V engine family has been developed with a totally new combustion system. This system employs direct fuel injection (DI) and carefully architected in-cylinder flow field development in order to significantly improve all aspects of combustion system performance. Efficiency improvements stem from increased compression ratio, greatly improved dilution tolerance, and excellent knock resistance. The asymmetric, 2-valve (2V) layout of the “Small Block” engine presented unique challenges in developing the combustion system, but also offered unusual opportunities for an elegant solution while retaining the traditional “Small Block” attributes of packaging efficiency and power density.
X