Refine Your Search

Search Results

Viewing 1 to 8 of 8
Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

2016-04-05
2016-01-0771
This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Engine Performance and Emissions of a Small Diesel Engine Fueled with Various Diesel/RME Blends

2014-11-11
2014-32-0135
The present paper describes the results of an experimental activity performed on a small diesel engine for quadricycles, a category of vehicles that is spreading in Europe and is recently spreading over Indian countries. The engine is a prototype three-cylinder with 1000 cc of displacement and it is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 emission standard that is a future regulation for quadricycles. It is worth underlining that the engine can meet emission limits just with EGR system and a DOC, without DPF. Various diesel/RME blends were tested; pure diesel and biodiesel fuels were also used. The investigation was carried out at the engine speeds of 1400, 2000 and 3400 rpm and full load. Combustion characteristics of both blended and pure RME were analyzed by means of in-cylinder pressure and heat released histories.
Technical Paper

Effect of Diesel/RME Blend on Particle Emissions from a Diesel Engine for Quadricycle Vehicle

2014-04-01
2014-01-1602
This paper deals with the combustion characteristics and exhaust emissions of a diesel engine fuelled with conventional diesel fuel and a biodiesel blend, in particular a 20% v/v concentration of rapeseed methyl ester (RME) mixed with diesel fuel. The investigation was carried out on a prototype three-cylinder engine with 1000 cc of displacement for quadricycle applications. The engine is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 and BS IV exhaust emission regulations without a diesel particulate filter. Both in-cylinder pressure and rate of heat release traces were analyzed at different engine speeds and loads. Gaseous emissions were measured at the exhaust. A smoke meter was used to measure the particulate matter concentration. The sizing and the counting of the particles were performed by means of an engine exhaust particle sizer spectrometer.
X