Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Gossip Networks: The Enabler for Sparsely Populated VANETs

2011-04-12
2011-01-0046
The future deployment of safety-oriented Dedicated Short Range Communications (DSRC) technology may be hindered due to the so-called “Market Penetration” problem: as a wireless network built from scratch, there is lack of value to consumers who are early adopters. In this paper, we explore potential applications that can be supported during the initial phase of vehicular ad-hoc network (VANET) deployment, i.e., sparsely populated VANETs. We show that delay-insensitive information sharing applications are promising since they only require opportunistic network connections (in contrast to safety applications that require “always on” connectivity). This is done via “gossip spread” information distribution protocols by which DSRC vehicles cache and then exchange the information while in range of other DSRC vehicles or road side units. This approach is especially attractive since the number of communicating vehicles will be very small during early deployment years.
Journal Article

Self-Pierce Riveting of Magnesium to Aluminum Alloys

2011-04-12
2011-01-0074
Magnesium and aluminum alloys offer lightweighting opportunities in automotive applications. Joining of dissimilar materials, however, generally requires methods that do not involve fusion. This paper explores the use of self-pierce riveting (SPR) to join magnesium to aluminum alloys for structural and closure applications. The preliminary results indicate that SPR is a viable option for joining aluminum extrusions to magnesium die castings, as well as stamped sheet aluminum to quick-plastic-formed (QPF) sheet magnesium.
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Determination of Used Crankcase Oil Condition by Capillary Electrophoresis Analysis of Extracted Organic Acids

2009-11-02
2009-01-2689
Organic acid degradation products and other anions in engine oil were speciated by capillary electrophoresis (CE) and liquid chromatography-mass spectrometry (LCMS) with electrospray ionization. The sample preparation procedure involved selectively extracting the acids and other water soluble salts into 0.05M aqueous potassium hydroxide. Samples of engine-aged mineral oil and synthetic engine oil contained formic acid, acetic acid, and complex mixtures of fatty acid degradation products. CE analysis of formic acid, acetic acid and selected fatty acids is proposed as a new chemical analysis method for evaluating the condition of engine oil and for studying the effects of high temperature-high load (HTHL) oxidation. Because the overall pattern of CE peaks in the electropherogram changes with oil age or condition, CE-fingerprint (i.e., pattern recognition) techniques may also be useful for evaluating an aged oil's condition or remaining service life.
Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

On the High Load Limit of Boosted Gasoline HCCI Engine Operating in NVO Mode

2010-04-12
2010-01-0162
The high load limit of a boosted homogeneous-charge-compression-ignition (HCCI) engine operating on negative-valve-overlap (NVO) was assessed. When operating under stoichiometric condition with no external dilution, the load, as measured by the net indicated mean effective pressure (NIMEP), increased with increase in manifold absolute pressure (MAP), and with decrease in trapped amount of residual gas. The maximum pressure rise rate (MPRR), however, also increased correspondingly. When the MAP and the amount of residual gas were adjusted so that the engine operating point could be held at a constant MPRR value, the NIMEP increased with the simultaneous decrease in MAP and residual until the misfire limit was reached. Therefore if a MPRR ceiling is imposed, the high load limit of an HCCI engine is at the intersection of the constraining MPRR line and the misfire line.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

A Dual Grid Curved Beam Finite Element Model of Piston Rings for Improved Contact Capabilities

2014-04-01
2014-01-1085
Piston rings are large contributors to friction losses in internal combustion engines. To achieve higher engine efficiency, low friction ring packs that can maintain good sealing performance must be designed. To support this effort, simulation tools have been developed to model the performance of piston rings during engine operation. However, the challenge of predicting oil consumption, blow by, and ring pack friction with sufficient accuracy remains. This is mostly due to the complexity of this system. Ring dynamics, deformation, interaction with liner and piston, gas and lubricant flow must all be studied together to make relevant predictions. In this paper, a new curved beam finite element model of piston rings is proposed. Ring structural deformation and contact with the liner are treated on two separate grids. A comparison with ring models in the literature and analytical solutions shows that it can provide accurate results efficiently.
Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
X