Refine Your Search

Topic

Search Results

Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

Applying Advanced High Strength Steels on Automotive Exterior Panels for Lightweighting and Dent Resistance

2020-04-14
2020-01-0535
The lightweighting potential brought by advanced high strength steels (AHSS) was studied on automotive exterior panels. The dent resistance was selected as a measure to quantify the lightweighting since it is the most crucial for exterior panels. NEXMET® 440EX and 490EX, which possess both the surface quality and high strength, are evaluated and compared with BH210 and BH240. The denting analysis was conducted first on representative plates with different curvatures to simulate the dented areas on door outer, roof and hood panels. In addition, both 1% and 2% pre-strain and baking scenarios are considered for this plate, which represent the most common situations for exterior panels. The maximal dent load that the plates can sustain was calculated and compared for all those steel grades. Then the dent resistance analysis was conducted on a selected door outer panel. The minimum gauge required to meet the dent resistance performance was obtained.
Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Journal Article

Formability Analysis Predictions for Preform Annealing of Aluminum Sheet

2011-04-12
2011-01-0533
It is important to understand the accuracy level of the formability analysis for any new process so that correct predictions can be made in product and die design. This report focuses on the formability analysis methodology developed for the preform anneal process. In this process, the aluminum panel is partially formed, annealed to eliminate the cold work from the first step, and then formed to the final shape using the same die. This process has the ability to form more complex parts than conventional aluminum stamping, and has been demonstrated on a complex one-piece door inner and a complex one-piece liftgate inner with AA5182-O3. Both panels only required slight design modifications to the original steel product geometry. This report focuses on the formability analysis correlation with physical panels for the liftgate inner, considering both full panel anneal in a convection oven and local annealing of critical areas.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Crashworthiness of Thin Ultra-light Stainless Steel Sandwich Sheets: From the Design of Core Materials to Structural Applications

2004-03-08
2004-01-0886
Thin sandwich sheets hold a promise for widespread use in automotive industry due to their good crash and formability properties. In this paper, thin stainless steel sandwich sheets with low-density core materials are investigated with regard to their performance in crashworthiness applications. The total thickness of the sandwich materials is about 1.2mm: 0.2mm thick facings and a 0.8mm thick sandwich core. Throughout the crushing of prismatic sandwich profiles, the sandwich facings are bent and stretched while the sandwich core is crushed under shear loading. Thus, a high shear crushing strength of the sandwich core material is beneficial for the overall energy absorption of the sandwich profile. It is shown theoretically that the weight specific shear crushing strength of hexagonal metallic honeycombs is higher than the one of fiber cores - irrespective of their relative density or microstructural geometry.
Technical Paper

Lightweight Tailgates with Stainless Steel

2004-03-08
2004-01-0883
To meet the automotive industry's increasing demand for lighter, more cost efficient products, AK Steel Corporation sees stainless steel as an effective material for structural components, including many light-weight body applications. With this in mind, AK Steel commissioned Troy, MI based Altair Engineering Inc. to design a lightweight tailgate using stainless steel that was easier to open and more resistant to dent and corrosion damage. The concept was designed to meet or exceed the performance of a current production carbon steel tailgate. This stainless steel design resulted in a 38% weight reduction over the carbon steel tailgate and can be a more cost-effective solution to aluminum or other alternative light-weight materials.
Technical Paper

Achieving An Affordable Low Emission Steel Vehicle; An Economic Assessment of the ULSAB-AVC Program Design

2002-03-04
2002-01-0361
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. These goals are conflicting in nature and solutions will be realized by innovative design, advanced material processing and advanced materials. Advanced high strength steels are engineered materials that provide a remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics essential to meeting the goals of automotive design. These characteristics act as enablers to cost- and mass-effective solutions. The ULSAB-AVC program demonstrates a solution to these conflicting goals and the advantages that are possible with the utilization of the advance high strength steels and provides a prediction of the material content of future body structures.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Investigation of Stamping Tooling Durability for Dual Phase Steels

2011-04-12
2011-01-1060
Advanced High-Strength Steels (AHSS) have become an essential part of the lightweighting strategy for automotive body structures. The ability to fully realize the benefits of AHSS depends upon the ability to aggressively form, trim, and pierce these steels into challenging parts. Tooling wear has been a roadblock to stamping these materials. Traditional die materials and designs have shown significant problems with accelerated wear, galling and die pickup, and premature wear and breakage of pierce punches. [1] This paper identifies and discusses the tribological factors that contribute to the successful stamping of AHSS. This includes minimizing tool wear and galling/die pick-up; identifying the most effective pierce clearance (wear vs. burr height) when piercing AHSS; and determining optimal die material and coating performance for tooling stamping AHSS.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

Application of Advanced High Strength Stainless Steel for Mass Reduction in Automotive Structures - A Front Bumper Beam Case Study

2011-04-12
2011-01-1054
The front bumper of a current production vehicle, which is made of hot-stamped 15B21 aluminized steel, was studied for mass and cost reductions using the Advanced High Strength Stainless Steel product NITRONIC® 30 (UNS Designation S20400) manufactured by AK Steel Corporation. This grade of stainless steel offers a combination of high ductility and strength, which was utilized to significantly modify the design of the bumper beam to incorporate geometry changes that improved its stiffness and strength. The structural performance of the bumper assembly was evaluated using LS-Dyna-based CAE simulations of the IIHS 40% Offset Full-Vehicle Impact at 40 mph with a deformable barrier, and the IIHS Full Width Centerline 6 mph Low-Speed Impact. Optimization of the bumper beam shape and gauge was performed using a combination of manual design iterations and a multi-objective optimization methodology using LS-Opt.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
Technical Paper

A Material Efficiency Ratio to Evaluate the Methods for Improving the Torsional Rigidity of a Pickup Chassis Frame

2018-04-03
2018-01-1024
While offering improved crash worthiness and significant lightweighting opportunities, the increased use of advanced high strength steels (AHSS) may compromise the stiffness and NVH performance of vehicles due to reduced part thickness. Different methods to improve the torsional rigidity were studied on a pickup chassis frame. These methods include adding bulkhead pairs as reinforcement, increasing the thicknes of frame parts, and enlarging the closed sections on the rails. Structural optimization was conducted for each stiffness improvement method and the minimal mass increase required to reach the improvement targets was obtained. A material efficiency ratio μ is proposed in this research and used as a criterion to evaluate the efficiency of a mass increase to improve the structural stiffness and NVH characteristics of vehicles. Based on this parameter, the methods to improve the torsional rigidity of the pickup frame in all design spaces were evaluated.
Technical Paper

An Analytical Model for Spring-Back Prediction in U-Channel Forming with Advanced High Strength Steel

2018-04-03
2018-01-0805
Spring-back phenomena are critical in stamping procedures for advanced high strength steel. An analytical model is developed to predict the spring-back effect for a U-channel part with post-stretching process. The stress distribution is obtained by direct application of material constitutive relationship. The subjected loading conditions are sequentially bending, (un-bending), and uniform stretching, based on different zones in the part. Both the loading history and the friction effects are considered in the model. The bending moments are obtained to generate a theoretical spring-back shape. Great performance in spring-back control is achieved by applying certain high level of external forces. FE simulation is conducted for the identical stamping process with post-stretching. Good correlation is observed between the analytical and numerical solutions/experimental results under various scenarios.
Technical Paper

The Influence of Edge Preparation Method on the Hole Expansion Performance of Automotive Sheet Steels

2013-04-08
2013-01-1167
Edge stretching performance was assessed with the conical-punch hole expansion test for a variety of automotive sheet steels. Included were: an ultra-low carbon IF steel, a dual-phase advanced high strength steel (DP 980), an austenitic stainless steel (204), an annealed martensitic stainless steel (410 AN), and a ferritic stainless steel (429 MOD). Various hole fabrication methods were considered: conventional piercing (shearing), water-jet cutting and laser cutting. With pierced holes, no effect of shearing clearance on the hole expansion ratio (HER) was observed. The dual-phase steel and the austenitic stainless steel exhibited relatively low hole expansion performance in the pierced-hole condition (HER ≤ 50%). However, these materials demonstrated tremendous potential for improvement with alternative edge preparation methods, and both benefitted more from laser cutting than from water-jet cutting.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
X