Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Comparative Assessment of Frequency Dependent Joint Properties Using Direct and Inverse Identification Methods

2015-06-15
2015-01-2229
Elastomeric joints are utilized in many automotive applications, and exhibit frequency and excitation amplitude dependent properties. Current methods commonly identify only the cross-point joint property using displacement excitation at stepped single frequencies. This process is often time consuming and is limited to measuring a single dynamic stiffness term of the joint stiffness matrix. This study focuses on developing tractable laboratory inverse experiments to identify frequency dependent stiffness matrices up to 1000 Hz. Direct measurements are performed on a commercial elastomer test system and an inverse experiment consisting of an elastic beam (with a square cross section) attached to a cylindrical elastomeric joint. Sources of error in the inverse methodology are thoroughly examined and explained through simulation which include ill-conditioning of matrices and the sensitivity to modeling error.
Journal Article

Dynamic Analysis of a Hydraulic Body Mount with Amplitude and Preload Dependence

2017-06-05
2017-01-1909
The application of hydraulic body mounts between a pickup truck frame and cab to reduce freeway hop and smooth road shake has been documented in literature and realized in production vehicles. Previous studies have demonstrated the potential benefits of these devices, often through iterative prototype evaluation. Component dynamic characterization has also shown that these devices exhibit significant dependence to preload and dynamic amplitude; however, analysis of these devices has not addressed these dependences. This paper aims to understand the amplitude and preload dependence on the spectrally-varying properties of a production hydraulic body mount. This double-pumping, three-spring mount construction has a shared compliant element between the two fluid-filled chambers.
X