Refine Your Search

Topic

Search Results

Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Technical Paper

Simulating Neck Injury in Frontal Impact using LS-DYNA

2007-04-16
2007-01-0677
Neck injury assessment is part of the FMVSS208 requirements. Hardware tests are often conducted to validate whether the vehicle safety system meets the requirements. This paper presents a full vehicle finite element model using LS-DYNA, including structural components, restraint system components, and dummies. In the case of a frontal impact at 30deg angle, in the areas of neck compression, neck extension and neck kinematics, it is demonstrated that a good correlation is achieved between the response of a FE dummy in the model and those of ATDs in the physical hardware tests. It is concluded that the math tool may be applied to comprehend test and design variations that may arise throughout a vehicle development lifecycle and to help develop a vehicle restraint system.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

From Algorithms to Software - A Practical Approach to Model-Driven Design

2007-04-16
2007-01-1622
The value of model-based design has been attempted to be communicated for more than a decade. As methods and tools have appeared and disappeared from a series of different vendors it has become apparent that no single vendor has a solution that meets all users’ needs. Recently standards (UML, MDA, MOF, EMF, etc.) have become a dominant force and an alternative to vendor-specific languages and processes. Where these standards have succeeded and vendors have failed is in the realization that they do not provide the answer, but instead provide the foundation to develop the answer. It is in the utilization of these standards and their capability to be customized that companies have achieved success. Customization has occurred to fit organizations, processes, and architectures that leverage the value of model-driven design.
Technical Paper

Forming Simulation and Validation of Laminated Steel Panels

2007-04-16
2007-01-1675
Laminated steel has been increasingly applied in automotive products for vibration and noise reduction. One of the major challenges the laminated steel poses is how to simulate forming processes and predict formability severity with acceptable correlation in production environment, which is caused by the fact that a thin polymer core possesses mechanical properties with significant difference in comparison with that of steel skins. In this study a cantilever beam test is conducted for investigating flexural behavior of the laminated steel and a finite element modeling technique is proposed for forming simulation of the laminated steel. Two production panels are analyzed for formability prediction and the results are compared with those from the try-out for validation. This procedure demonstrates that the prediction and try-out are in good agreement for both panels.
Technical Paper

Virtual Manufacturing of Automotive Body Side Outers Using Advanced Line Die Forming Simulation

2007-04-16
2007-01-1688
As a virtual manufacturing press line, line die forming simulation provides a full range math-based engineering tool for stamping die developments of automotive structure and closure panels. Much beyond draw-die-only formability analysis that has been widely used in stamping simulation community during the last decade, the line die formability analysis allows incorporating more manufacturing requirements and resolving more potential failures before die construction and press tryout. Representing the most difficult level in formability analysis, conducting line die formability analysis of automotive body side outers exemplifies the greatest technological challenge to stamping CAE community. This paper discusses some critical issues in line die analysis of the body side outers, describes technical challenges in applications, and finally demonstrates the impact of line die forming simulation on the die development.
Technical Paper

A Unified Approach to Forward and Lane-Change Collision Warning for Driver Assistance and Situational Awareness

2008-04-14
2008-01-0204
A unified approach to collision warning due to in-lane and neighboring traffic is presented. It is based on the concept of velocity obstacles, and is designed to alert the driver of a potential front collision and against attempting a dangerous lane change maneuver. The velocity obstacle represents the set of the host velocities that would result in collision with the respective static or moving vehicle. Potential collisions are simply determined when the velocity vector of the host vehicle penetrates the velocity obstacle of a neighboring vehicle. The generality of the velocity obstacle and its simplicity make it an attractive alternative to competing warning algorithms, and a powerful tool for generating collision avoidance maneuvers. The velocity obstacle-based warning algorithm was successfully tested in simulations using real sensor data collected during the Automotive Collision Avoidance System Field Operational Test (ACAS FOT) [10].
Technical Paper

Strain-Rate Characterization of Automotive Steel and the Effect of Strain-Rate in Component Crush Analysis

1998-09-29
982392
The effects of strain-rate and element mesh size on the numerical simulation of an automotive component impacted by a mass dropped from an instrumented drop tower was investigated. For this study, an analysis of a simple steel rail hat-section impacted by a mass moving at an initial velocity of 28Mph was performed using the explicit finite element code Radioss. Three constitutive material models: Elasto-Plastic (without strain rate), Johnson-Cook, and Zerilli-Armstrong were used to characterize the material properties for mild and high strength steel. Results obtained from the numerical analyses were compared to the experimental data for the maximum crush, final deformation shape, average crush force and the force-deflection curve. The results from this study indicate that the mechanical response of steel can be captured utilizing a constitutive material model which accounts for strain rate effect coupled with an average mesh size of 6 to 9mm.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Dynamic Spot Weld Testing

2009-04-20
2009-01-0032
Static and dynamic strength tests were performed on spot welded specimens made of dual-phase (DP) 780 and mild steels (DQSK). Lap-shear (LS) and cross-tension (CT) as well as a new mixed mode specimen were studied using MTS hydraulic universal testing machine for static tests and drop weight tower for dynamic tests. Three weld nugget sizes were made for each steel and CT and LS. DP780 with one weld size was also tested in mixed mode. Load and displacement as functions of time and fracture mode of the spot welds were recorded. Representative data are reported in this paper.
Technical Paper

Robust Analysis of Clamp Load Loss in Aluminum Threads due to Thermal Cycling

2009-04-20
2009-01-0989
A DFSS study identified a new mechanism for clamp load loss in aluminum threads due to thermal cycling. In bolted joints tightened to yield, the difference in thermal expansion between the aluminum and steel threads can result in a loss of clamp load with each thermal cycle. This clamp load loss is significantly greater than the loss that can be explained by creep alone. A math model was created and used to conduct a robust analysis. This analysis led to an understanding of the design factors necessary to reduce the cyclic clamp load loss in the aluminum threads. This understanding was then used to create optimized design solutions that satisfy constraints common to powertrain applications. Estimations of clamp load loss due to thermal cycling from the math model will be presented. The estimates of the model will be compared to observed physical test data. A robust analysis, including S/N and mean effect summary will be presented.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

Early Noise Analysis for Robust Quiet Brake Design

2009-04-20
2009-01-0858
At the early design stage it is easier to achieve impacts on the brake noise. However most noise analyses are applied later in the development stage when the design space is limited and changes are costly. Early noise analysis is seldom applied due to lack of credible inputs for the finite element modeling, the sensitive nature of the noise, and reservations on the noise event screening of the analysis. A high quality brake finite element model of good components’ and system representation is the necessary basis for credible early noise analysis. That usually requires the inputs from existing production hardware. On the other hand in vehicle braking the frequency contents and propensity of many noise cases are sensitive to minor component design modifications, environmental factors and hardware variations in mass production. Screening the noisy modes and their sensitivity levels helps confirm the major noisy event at the early design stage.
Technical Paper

10 Year-Old Hybrid III ATD Positions in Panic Brake Conditions

2004-03-08
2004-01-0848
Panic braking can cause an “in-position” unbelted occupant to become “out-of-position.” Although the braking event dynamics and initial positioning of the occupant affect the final position at time of impact (if any), general trends are assumed. FMVSS208 now includes “out-of-position” (OOP) performance for Anthropomorphic Test Devices (ATDs) sizes twelve month to six year-old. Airbag suppression technologies currently address that range of OOP occupants. The objective of this study is to develop an approach to defining OOP test positions for the recently released 10 year old ATD and to assist restraint engineers in developing strategies to help reduce the risk of inflation induced injury to the larger out-of-position child. A series of panic brake tests was conducted with the 10 year-old Hybrid III to study panic braking kinematics. Antilock braking (ABS) generated the desired constant deceleration from high initial speeds (40 to 60mph) in three types of vehicles.
Technical Paper

A Novel Design Concept of a Lateral Sliding Bucket Seat on Roller Mechanisms

2003-10-27
2003-01-2753
A novel lateral sliding vehicle bucket seat was developed to address consumer needs for improved facile access to third row seats in minivans and sport utility vehicles. The concept provides for a second row bucket seat to slide laterally across a vehicle floor by roller mechanisms that roll across steel rails that transverse the vehicle floor. The system consists of two T-section type steel rails mounted parallel to each other at a distance equal to the seat riser support attachment features. The seat risers contain a roller mechanism that enables contact with the cylindrical portion of the steel rails. Each steel rail contains rectangular openings spaced appropriately to allow the seat latching mechanisms to engage securely. The seat riser supports at the rear include a releasable clamping mechanism hook that engages and disengages into the rectangular openings of the steel rails.
Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Plastic Material Modeling for FMVSS 201 Simulation

2002-03-04
2002-01-0385
This paper examines the effect of rate dependence of material parameters on FMVSS 201 simulation using LS-DYNA with the exiting elasto-plastic material models and user subroutines. The material parameters investigated include the yield stress, Young's modulus and failure strain. The effect of yield criterion is also discussed.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

The Effects of Friction on Bursting of Tubes in Corner Filling

2003-03-03
2003-01-0688
Corner filling is a benchmark experiment in tube hydroforming. It was designed to gain knowledge pertinent of this new fabrication process. The corner filling benchmark has been widely used in the automotive and steel industries. Common sense as well as physical tests suggests that friction is an important parameter that affects the deformation of the tube and the bursting of the tubes. However, numerical simulations have yet to verify this fact. In this paper, the stress/strain states in the tube were computed using a finite element model. The dependence of bursting on friction for corner filling was estimated by using the forming limit diagram and a tensile-based failure criterion.
X