Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Reducing Engine-Out Emissions for Medium High Speed Diesel Engines: Influence of Injection Parameters

2009-04-20
2009-01-1437
In 2004 the European Parliament ratified the Euro III and IV standards limiting the pollutant emission of, among others, rail and marine diesel engines. In these sectors, it is particularly important to keep any fuel consumption penalty, when reducing emissions, to a strict minimum. Furthermore, exhaust gas after treatment is mostly avoided for cost reasons. Thus, manufacturers are looking to pretreatment of fuels, alternative fuels, and limiting engine-out emissions as ways to attain the required emission levels. This paper discusses the experimental work done on a 1324 kW, 1000 rpm six cylinder marine diesel engine equipped with mechanical unit injectors. The aim was to determine the influence of compression ratio and fuel injection parameters on engine-out emissions, with emphasis on NOx emissions. A range of fuel injection parameters were examined, varying the start of injection, pump plunger diameter, injection pressure, and injector nozzle geometry.
Technical Paper

Using Vegetable Oils and Animal Fats in Diesel Engines: Chemical Analyses and Engine Tests

2009-04-20
2009-01-0493
There is a growing consensus that there will not be a single alternative to fossil fuels, but rather different fuels, fuel feedstocks, engine types and operating strategies. For stationary diesel engines, straight vegetable oils are an interesting alternative to fossil diesel, because of their potential for lower life cycle greenhouse gas emissions. Using animal fats is also compelling, as it does not imply the cultivation of oil-bearing seeds and related emissions, not to mention the ‘food versus fuel’ debate. The aim of the present work is to correlate engine performance and durability with the properties (composition) of these alternative fuels, to provide a basis from which standards can be formulated for the properties of oils and fats to be used as engine fuel. Tests on different oils and fats are reported.
Technical Paper

Studying the Effect of the Flame Passage on the Convective Heat Transfer in a S.I. Engine

2017-03-28
2017-01-0515
Engine optimization requires a good understanding of the in-cylinder heat transfer since it affects the power output, engine efficiency and emissions of the engine. However little is known about the convective heat transfer inside the combustion chamber due to its complexity. To aid the understanding of the heat transfer phenomena in a Spark Ignition (SI) engine, accurate measurements of the local instantaneous heat flux are wanted. An improved understanding will lead to better heat transfer modelling, which will improve the accuracy of current simulation software. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux within a Cooperative Fuel Research (CFR) engine. A two-zone temperature model is linked with the heat flux data. This allows the distinction between the convection coefficient in the unburned and burned zone.
Technical Paper

Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation

2017-09-04
2017-24-0032
The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

Drive Cycle Analysis of Load Control Strategies for Methanol Fuelled ICE Vehicle

2012-09-10
2012-01-1606
The use of methanol as spark-ignition engine fuel can help to increase energy security and offers the prospect of carbon neutral transport. Methanol's properties enable considerable improvements in engine performance, efficiency and CO2 emissions compared to gasoline operation. SAE paper 2012-01-1283 showed that both flex-fuel and dedicated methanol engines can benefit from an operating strategy employing exhaust gas recirculation (EGR) to control the load while leaving the throttle wide open (WOT). Compared to throttled stoichiometric operation, this reduces pumping work, cooling losses, dissociation and engine-out NOx. The current paper presents follow-up work to determine to what extent these advantages still stand over an entire drive cycle. The average vehicle efficiency, overall CO2 and NOx emissions from a flexible fuel vehicle completing a drive cycle on gasoline and methanol were evaluated.
Technical Paper

Development and Testing of an EGR System for Medium Speed Diesel Engines

2012-04-16
2012-01-0680
Medium speed diesel engines are well established today as a power source for heavy transport and stationary applications and it appears that they will remain so in the future. However, emission legislation becomes stricter, reducing the emission limits of various pollutants to extremely low values. Currently, many techniques that are well established for automotive diesel engines (common rail, after treatment, exhaust gas recirculation - EGR, …) are being tested on these large engines. Application of these techniques is far from straightforward given the different requirements and boundary conditions (fuel quality, durability, …). This paper reports on the development and experimental results of cooled, high pressure loop EGR operation on a 1326kW four stroke turbocharged medium speed diesel engine, with the primary goal of reducing the emission of oxides of nitrogen (NOx). Measurements were performed at various loads and for several EGR rates.
Technical Paper

Development and Validation of a Knock Prediction Model for Methanol-Fuelled SI Engines

2013-04-08
2013-01-1312
Knock is one of the main factors limiting the efficiency of spark-ignition engines. The introduction of alternative fuels with elevated knock resistance could help to mitigate knock concerns. Alcohols are prime candidate fuels and a model that can accurately predict their autoignition behavior under varying engine operating conditions would be of great value to engine designers. The current work aims to develop such a model for neat methanol. First, an autoignition delay time correlation is developed based on chemical kinetics calculations. Subsequently, this correlation is used in a knock integral model that is implemented in a two-zone engine code. The predictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of compression ratios, loads, ignition timings and equivalence ratios.
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

Evaluation of a Flow-Field-Based Heat Transfer Model for Premixed Spark-Ignition Engines on Hydrogen

2013-04-08
2013-01-0225
Hydrogen-fuelled internal combustion engines are an attractive alternative to current drive trains, because a high efficiency is possible throughout the load range and only emissions of oxides of nitrogen (NOx) can be emitted. The latter is an important constraint for power and efficiency optimization. Optimizing the engine with experiments is time consuming, so thermodynamic models of the engine cycle are being developed to speed up this process. Such a model has to accurately predict the heat transfer in the engine, because it affects all optimization targets. The standard heat transfer models (Annand and Woschni) have already been cited to be inaccurate for hydrogen engines. However, little work has been devoted to the evaluation of the flow-field based heat transfer model, which is the topic of this paper. The model is evaluated with measurements that focus on the effect of the fuel, under motored and fired operation.
Technical Paper

A Heat Transfer Model for Low Temperature Combustion Engines

2018-09-10
2018-01-1662
Low Temperature Combustion is a technology that enables achieving both a higher efficiency and simultaneously lower emissions of NOx and particulate matter. It is a noun for combustion regimes that operate with a lean air-fuel mixture and where the combustion occurs at a low temperature, such as Homogeneous Charge Compression Ignition and Partially Premixed Combustion. In this work a new model is proposed to predict the instantaneous heat flux in engines with Low Temperature Combustion. In-cylinder heat flux measurements were used to construct this model. The new model addresses two shortcomings of the existing heat transfer models already present during motored operation: the phasing of the instantaneous heat flux and the overprediction of the heat flux during the expansion phase. This was achieved by implementing the in-cylinder turbulence in the heat transfer model. The heat transfer during the combustion was taken into account by using the turbulence generated in the burned zone.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

2015-04-14
2015-01-1750
Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Development and Evaluation of the Predictive Capabilities of a Dual-Fuel Combustion Model with Methanol or Hydrogen in a Medium Speed Large Bore Engine

2023-08-28
2023-24-0008
To mitigate climate change, it is essential that sustainable technologies emerge in the transport industry. One viable solution is the use of methanol or hydrogen combined with internal combustion engines (ICEs). The dual-fuel technology in particular, in which a diesel pilot ignites port fuel injected methanol or hydrogen, is of great interest to transition from diesel engines to ICEs using purely these fuels. This approach allows for a significant portion of fossil diesel to be replaced with sustainable methanol or hydrogen, while maintaining high efficiencies and the possibility to run solely on diesel if required. Additionally, lower engine-out pollutant emissions (NOx, soot) are produced. Although multiple experimental research results are available, numerical literature on both fuels in dual-fuel mode is scarce. Therefore, this study aims to develop a multi-zone dual-fuel combustion model for engine simulations.
Technical Paper

Experimental Evaluation of Lean-burn and EGR as Load Control Strategies for Methanol Engines

2012-04-16
2012-01-1283
The use of light alcohols as SI engine fuels can help to increase energy security and offer the prospect of carbon neutral transport. These fuels enable improvements in engine performance and efficiency as several investigations have demonstrated. Further improvements in efficiency can be expected when switching from throttled stoichiometric operation to strategies using mixture richness or exhaust gas recirculation (EGR) to control load while maintaining wide open throttle (WOT). In this work the viability of throttleless load control using EGR (WOT EGR) or mixture richness (WOT lean burn) as operating strategies for methanol engines was experimentally verified. Experiments performed on a single-cylinder engine confirmed that the EGR dilution and lean burn limit of methanol are significantly higher than for gasoline. On methanol, both alternative load control strategies enable relative indicated efficiency improvements of about 5% compared to throttled stoichiometric operation.
X