Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development and Validation of a Knock Prediction Model for Methanol-Fuelled SI Engines

2013-04-08
2013-01-1312
Knock is one of the main factors limiting the efficiency of spark-ignition engines. The introduction of alternative fuels with elevated knock resistance could help to mitigate knock concerns. Alcohols are prime candidate fuels and a model that can accurately predict their autoignition behavior under varying engine operating conditions would be of great value to engine designers. The current work aims to develop such a model for neat methanol. First, an autoignition delay time correlation is developed based on chemical kinetics calculations. Subsequently, this correlation is used in a knock integral model that is implemented in a two-zone engine code. The predictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of compression ratios, loads, ignition timings and equivalence ratios.
Technical Paper

Downsizing Potential of Methanol Fueled DISI Engine with Variable Valve Timing and Boost Control

2018-04-03
2018-01-0918
Methanol is gaining traction in some regions, e.g. for road transportation in China and for marine transportation in Europe. In this research, the possibility for achieving higher power output and higher efficiency with methanol, compared to gasoline, is investigated and the influence of several engine settings, such as valve timing and intake boost control, is studied. At wide open throttle (WOT), engine speed of 1650 rpm, the brake mean effective pressure (BMEP) of the methanol-fueled engine is higher than on gasoline, by around 1.8 bar. The maximum BMEP is further increased when positive valve overlap and higher intake boost pressure are applied. Thanks to a lower residual gas fraction, and a richer in-cylinder mixture with positive valve overlap period, the engine BMEP improves by a further 2.6 bar. Because of higher volumetric efficiency with a boosted intake air, the engine BMEP enhances with 4.7 bar.
Technical Paper

Integration and Validation of a Quasi-Dimensional Modelling Methodology and Application to Light-Duty and Heavy-Duty Methanol-Fueled Spark-Ignited Engines

2022-03-29
2022-01-0385
To speed up the development of the next-generation combustion engines with renewable fuels, the importance of reliable and robust simulations cannot be overemphasized. Compared to gasoline, methanol is a promising fuel for spark-ignited engines due to its higher research octane number to resist auto-ignition, higher flame speed for faster combustion and higher heat of vaporization for intake charge cooling. These advantageous properties all contribute to higher thermal efficiency and lower knock tendency, and they need to be well-captured in the simulation environment in order to generate accurate predictions. In this paper, the sub-models which estimate the burning velocities and ignition delay of methanol are revisited. These building blocks are implemented and integrated in a quasi-dimensional simulation environment to predict the combustion behavior, which are subsequently validated against test data measured on both light-duty and heavy-duty engines.
X