Refine Your Search

Topic

Author

Search Results

Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Journal Article

Advanced Heat Transfer and Underhood Airflow Investigation with Focus on Continuously Variable Transmission (CVT) of Snowmobiles

2017-06-28
2017-01-9180
The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

2020-04-14
2020-01-0824
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.
Journal Article

New and Innovative Combustion Systems for the H2-ICE: Compression Ignition and Combined Processes

2009-04-20
2009-01-1421
Hydrogen nowadays is considered one promising energy carrier for future mobility scenarios. Its application as a fuel in ICEs greatly benefits from Direct Injection (DI) strategies, which help to reduce the disadvantages of PFI systems such as air displacement effects, knocking, backfiring and low power density. In SI-engines one appropriate way to increase efficiency is the reduction of wall heat losses by jet- and/or wall-guided mixture formation systems. In theory, Compression Ignition (CI) systems employing a diffusion type of combustion allow for a significant raise in compression ratio and, thus, are likely to excel the SI concept in terms of efficiency. The following paper deals with results obtained from investigations on H2 Compression-Ignition (H2-CI) combustion systems by employing both thermodynamic research engines and 3D CFD simulation.
Technical Paper

Investigation of the Thermal Vehicle Brake Behavior During the Vehicle's Development Phase by Co-Simulation

2007-10-07
2007-01-3935
The mathematical thermal design of the vehicle brakes will lead to success if all influence parameters such as friction (fading effect), car geometry and inertia, brake amplifier, tire, convective heat flow, heat conductance and heat radiation are taken into consideration. In addition to a lot of design criteria, the thermal stability of the vehicle brake is becoming more and more important because of permanently increasing engine powers and weight of the vehicles. This requires both stable friction behavior in the contact zone between brake lining and brake disk and a sufficient transfer of the friction energy by means of convective heat flow. In order to accomplish these two tasks, considerable expense on a brake test bed and innumerable brake trials are necessary. It must be guarantied at the end of the brake design process that the vehicle reaches the required braking distance and the thermal stability of the brake, e.g. after several freeway braking sequences.
Technical Paper

Potential of E85 Direct Injection for Passenger Car Application

2010-10-25
2010-01-2086
This paper presents an analysis of the potential of E85 (a mixture of 85 % (bio)ethanol and 15 % gasoline) as a fuel for spark-ignition (SI) direct-injection internal combustion engines. This involves investigation of not only application to downsizing concepts with high specific power but also behavior relating to emissions and efficiency at both part and full load. Measurements while running on gasoline were used for comparison purposes. The first stage involved analysis using 1D simulation of two different downsizing concepts with regard to turbocharging potential and performance. Following this, various influential parameters such as injector position, injection pressure, compression ratio, degree of turbocharging etc. were investigated on a single cylinder research engine. In the case of high pressure direct injection, particulate emissions also play an important role, so particulate count and particulate size distribution were also studied in detail.
Technical Paper

Exhaust System Simulation of a 2-Cylinder 2-Stroke Engine Including Heat Transfer Effects

2010-09-28
2010-32-0035
The exhaust system design has an important influence on the charge mass and the composition of the charge inside the cylinder, due to its gas dynamic behavior. Therefore the exhaust system determines the characteristics of the indicated mean effective pressure as well. The knowledge of the heat transfer and the post-combustion process of fuel losses inside the exhaust system are important for the thermodynamic analysis of the working process. However, the simulation of the heat transfer over the exhaust pipe wall is time consuming, due to the demand for a transient simulation of many revolutions until a cyclic steady condition is reached. Therefore, the exhaust pipe wall temperature is set to constant in the conventional CFD simulation of 2-stroke engines. This paper covers the discussion of a simulation strategy for the exhaust system of a 2-cylinder 2-stroke engine until cyclic steady condition including the heat transfer over the exhaust pipe wall.
Technical Paper

Investigations on Low Pressure Gasoline Direct Injection for a Standard GDI Combustion System

2010-09-28
2010-32-0094
In the course of the last few years a continuous increase of the injection pressure level of gasoline direct injection systems appeared. Today's systems use an injection pressure up to 200bar and the trend shows a further increase for the future. Although several benefits go along with the increased injection pressure, the disadvantages such as higher system costs and higher energy demand lead to the question of the lowest acceptable injection pressure level for low cost GDI combustion systems. Lowering injection pressure and costs could enable the technological upgrading from MPFI to GDI in smaller engine segments, which would lead to a reduction of CO2 emission. This publication covers the investigation of a low pressure GDI system (LPDI) with focus on small and low cost GDI engines. The influence of the injection pressure on the fuel consumption and emission behavior was investigated using a 1.4l series production engine.
Technical Paper

Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-01-01
2004-01-2105
An efficient and economic method to increase the performance of four stroke engines can be accomplished by utilizing the crankcase supercharging method. The lubrication of the movable parts in the crankcase by mixing the intake air with lubricant leads to a high oil consumption and disadvantages in the emission characteristics. This paper describes parts of a research project with the goal to develop a supercharged four–stroke engine with a closed loop lubrication system for the crank train and the cylinder head. The thermodynamic layout and the development of an oil separating system have been carried out with the help of simulation tools and development work on a flow test bench.
Technical Paper

Experimental Investigations Regarding the Potential of an Electronic Ignition Timing Control for a Lawn Mower Engine

2016-11-08
2016-32-0083
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which is even provided by the simplest engine setup, is some form of the crankshaft speed since it is essential for the functionality of the engine.
Technical Paper

Fundamental Investigations on the Boost Pressure Control System of Charged Aircraft Engines in the Aviation Class ELA1 / Approved Systems Versus New Solutions

2012-10-23
2012-32-0048
Aircraft engines in the (ELA1) category, with a maximum power of up to 100kW, are characterized by a verified state of the art technology. New developments of engine technologies and control methods are very slowly being introduced into this engine segment. This trend is based on the fact that new technologies implemented in aircraft engines must be thoroughly certified and validated in a very complex and documented procedure. For this reason, most of the engines in this class are equipped with a carburetor as an air/fuel mixture preparation system. Moreover, naturally aspirated spark ignited engines are widely used in the aircraft category, with a take-off weight of up to 1000kg.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Influence of Ethanol and 2-Butanol Blended Fuels on Combustion and Emissions in a Small Displacement Two Stroke Engine

2018-10-30
2018-32-0044
Small displacement two-stroke engines are cheap and low-maintenance propulsion systems and commonly used in scooters, recreation vehicles and handheld power-tools. The restriction by emission legislation and the increasing environmental awareness of end users as well as decreasing energy resources cause a rethinking in the development of propulsion systems and fuels in these fields. Despite recent improvements of electric powertrains, two stroke engines are the challenged propulsion system in high performance handheld power tools at the moment. The reasons are the extraordinary high power to weight ratio of two-stroke engines, the high energy density of liquid fuels and the reliability of the product with respect to extreme ambient conditions. Nevertheless, further improvements on emissions and fuel consumption of small displacement two-stroke engines can be realized.
Technical Paper

Combustion Analysis with Residual Gas as a Design Parameter for Two-Stroke Engines

2018-10-30
2018-32-0045
In a variety of applications, two-stroke engines assert their usage as a propulsion unit, for examples in off-road vehicles, scooters, hand-held power tools and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. Furthermore, two-stroke engines convince with high durability and low maintenance demand. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of two-stroke engines. The reduction of emissions and fuel consumption with a constant power level is focused on. Developments deal with the optimization of the combustion process itself or the enhancement of the exhaust gas aftertreatment. Especially in very small two-stroke engines an exhaust gas aftertreatment system is rarely applied, due to disadvantages regarding component temperatures and product costs.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
X