Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Lightning Effects on Hydraulic Transport Elements in Composite Aircraft

2011-10-18
2011-01-2760
In this study, lightning effects on hydraulic transport elements in composite aircraft have been considered for the first time. Based on recent test results and analysis, several forms of possible structural damage and system component failures are presented. A unique approach in analysis has been taken to account that hydraulic transport elements, as a part of several aircraft systems, have a common interface with electrical wiring, and become complex electric networks. When an aircraft is exposed to a direct lightning strike, a metal skin on the wings and fuselage will conduct lightning currents in a way that only a small amount of induced electromagnetic energy will be present on hydraulic transport elements. So, in the past, hydraulic tubes, actuators, manifolds, and all other hydro-mechanical devices, as parts of various aircraft systems, have never been considered as lightning sensitive components.
Technical Paper

Two Dimensional Analytical Analysis of Fluid Film Thickness on Pivoting Tilting Pad Bearings

2007-10-29
2007-01-4140
Tilting pad bearings are designed by hydrodynamic principles and have been utilized in applications carrying shaft thrust or radial loads in many mechanisms for decades. The object of this paper is to derive the optimized pivoting positions in the radial and circumferential directions of tilting pad thrust and radial bearings and to calculate minimum fuel film thickness for a given running condition of velocity, temperature, viscosity, bearing geometry, and loading forces. The Reynolds equation derived on the tilting pad bearing fluid model is simplified into a one dimensional equation and applied in two dimensions to solve for the minimum fluid film thickness from pressure distribution in the load-carrying analysis.
Technical Paper

Accuracy Assessment of the Major Constituent Analyzer

2005-07-11
2005-01-2893
The Major Constituent Analyzer (MCA) is a mass spectrometer-based atmospheric monitoring instrument in the Laboratory Module of the International Space Station (ISS). The MCA is used for continuous environmental monitoring of 6 major gas constituents in the ISS atmosphere as well as safety-critical monitoring for special Environmental Control and Life Support (ECLS) operations such as Pre-Breathe in the Airlock for Extra-Vehicular Activities (EVAs) and oxygen re-pressurizations. For the latter, it is desirable to make most efficient use of consumables by transferring the maximum amount from O2 re-supply tanks on board the shuttle or Progress. The upper safety limit for O2 transfer is constrained by the MCA measurement error bands. A study was undertaken to tighten these error bands and afford NASA-Mission Operations Directorate (MOD) more operational flexibility.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

High Heat Flux Dissipation for DEW Applications

2004-11-02
2004-01-3205
A High Heat Flux Demonstration Program has been initiated to investigate and demonstrate the performance of a number of candidate cooling technologies to address the need of dissipating the large thermal loads and high heat fluxes associated with Directed Energy Weapons (DEW) systems. The technologies selected for these investigations utilize both single-phase and two-phase cooling concepts. The single-phase devices investigated are based upon the concept of jet impingement with and without extended surface areas. The two-phase devices investigated extend the jet impingement concepts into the liquid-vapor phase change regime, as well as a device based upon vapor injection spray cooling technology. In addition, all devices must demonstrate scalability. For each device a unit cooling cell has been defined and greater surface area capability is to be achieved with the addition of adjacent cells without significantly affecting the performance of neighboring cells.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware

2008-06-29
2008-01-2060
Following the Columbia accident, the EMUs (Extravehicular Mobility Units) onboard the ISS (International Space Station) went unused for an extended period of time. Upon startup, the units experienced a failure in the coolant systems. The failure resulted in a loss of EVA (Extravehicular Activity) capability from the US segment of the ISS. A failure investigation determined that chemical and biological contaminants and byproducts from the ISS Airlock Heat Exchanger, and the EMU itself, fouled the magnetically coupled pump in the EMU Transport Loop Fan/Pump Separator leading to a lack of coolant flow. Remediation hardware (the Airlock Coolant Loop Remediation water processing kit) and a process to periodically clean the EMU coolant loops on orbit were devised and implemented. The intent of this paper is to report on the successful implementation of the resultant hardware and process, and to highlight the go-forward plan.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-bed (CAMRAS)

2007-07-09
2007-01-3157
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations led by Hamilton Sundstrand is developing an amine based humidity and carbon dioxide (CO2) removal process and prototype equipment for Vision for Space Exploration (VSE) applications. This system employs thermally linked amine sorbent beds operating as a pressure swing adsorption system, using the vacuum of space for regeneration. The prototype hardware was designed based on a two fault tolerant requirement, resulting in a single system that could handle the metabolic water and carbon dioxide load for a crew size of six. Two, full scale prototype hardware sets, consisting of a linear spool valve, actuator and amine sorbent canister, have been manufactured, tested, and subsequently delivered to NASA JSC. This paper presents the design configuration and the pre-delivery performance test results for the CAMRAS hardware.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware Phase II

2009-07-12
2009-01-2541
An EMU water processing kit (Airlock Coolant Loop Recovery – A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of post-flight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives were implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit items, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements.
X