Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

Two Dimensional Analytical Analysis of Fluid Film Thickness on Pivoting Tilting Pad Bearings

2007-10-29
2007-01-4140
Tilting pad bearings are designed by hydrodynamic principles and have been utilized in applications carrying shaft thrust or radial loads in many mechanisms for decades. The object of this paper is to derive the optimized pivoting positions in the radial and circumferential directions of tilting pad thrust and radial bearings and to calculate minimum fuel film thickness for a given running condition of velocity, temperature, viscosity, bearing geometry, and loading forces. The Reynolds equation derived on the tilting pad bearing fluid model is simplified into a one dimensional equation and applied in two dimensions to solve for the minimum fluid film thickness from pressure distribution in the load-carrying analysis.
Technical Paper

GE Aviation Low Emissions Combustion Technology Evolution

2007-09-17
2007-01-3924
Propulsion engine low-emission combustion technology evolution of the last 30 years is described with a special emphasis on the most recent development, namely Twin Annular Premixing Swirler, TAPS. TAPS mixer technology has been developed for potential application in Single and Dual Annular Combustors, SAC and DAC. Both SAC and DAC TAPS technology development efforts have gone through full-scale annular combustor demonstration for emissions, pressure and airflow distribution, combustor exit temperature quality, structure temperature levels and gradients, lean blowout and ignition characteristics. The SAC TAPS technology demonstration effort involved full-scale engine testing including sea-level emissions, performance, cyclic durability, operability in regard to ignition, acceleration and snap decel (throttle burst-chop transient) and operation under inclement weather conditions.
Technical Paper

Heat Exchanger Fouling Diagnosis for an Aircraft Air-Conditioning System

2013-09-17
2013-01-2250
This paper addresses the issue of fault diagnosis in the heat exchanger of an aircraft Air Conditioning System (ACS). The heat exchanger cools the air by transferring the heat to the ram-air. Due to a variety of biological, mechanical and chemical reasons, the heat exchanger may experience fouling conditions that reduces the efficiency and could considerably affect the functionality of the ACS. Since, the access to the heat exchanger is limited and time consuming, it is preferable to implement an early fault diagnosis technique that would facilitate Condition Based Maintenance (CBM). The main contribution of the paper is pre-flight fault assessment of the heat exchanger using a combined model-based and data-driven approach of fault diagnosis. A Simulink model of the ACS, that has been designed and validated by an industry partner, has been used for generation of sensor data for various fouling conditions.
Technical Paper

Accuracy Assessment of the Major Constituent Analyzer

2005-07-11
2005-01-2893
The Major Constituent Analyzer (MCA) is a mass spectrometer-based atmospheric monitoring instrument in the Laboratory Module of the International Space Station (ISS). The MCA is used for continuous environmental monitoring of 6 major gas constituents in the ISS atmosphere as well as safety-critical monitoring for special Environmental Control and Life Support (ECLS) operations such as Pre-Breathe in the Airlock for Extra-Vehicular Activities (EVAs) and oxygen re-pressurizations. For the latter, it is desirable to make most efficient use of consumables by transferring the maximum amount from O2 re-supply tanks on board the shuttle or Progress. The upper safety limit for O2 transfer is constrained by the MCA measurement error bands. A study was undertaken to tighten these error bands and afford NASA-Mission Operations Directorate (MOD) more operational flexibility.
Technical Paper

High Heat Flux Dissipation for DEW Applications

2004-11-02
2004-01-3205
A High Heat Flux Demonstration Program has been initiated to investigate and demonstrate the performance of a number of candidate cooling technologies to address the need of dissipating the large thermal loads and high heat fluxes associated with Directed Energy Weapons (DEW) systems. The technologies selected for these investigations utilize both single-phase and two-phase cooling concepts. The single-phase devices investigated are based upon the concept of jet impingement with and without extended surface areas. The two-phase devices investigated extend the jet impingement concepts into the liquid-vapor phase change regime, as well as a device based upon vapor injection spray cooling technology. In addition, all devices must demonstrate scalability. For each device a unit cooling cell has been defined and greater surface area capability is to be achieved with the addition of adjacent cells without significantly affecting the performance of neighboring cells.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

Feasibility Study of a Next-Generation Submarine Atmosphere Monitoring System

2004-07-19
2004-01-2268
Atmospheric monitoring is one of the most important elements in life support aboard U.S. Navy nuclear submarines. The Central Atmosphere Monitoring Systems have reliably served the U.S. Navy by accurately monitoring life gases and contaminants for nearly 30 years. However, as new knowledge of chemical effects on human health increases, the demand for monitoring additional compounds in these closed environments is also increasing. As a result, expanded capability for detecting trace compounds becomes more important and a next-generation monitoring system is warranted. In addition to improved analytical performance, the trend for submarine operation is to increase the degree of distribution and automation to minimize the resources needed for operation and maintenance. It is therefore desirable to incorporate the monitoring instrumentation into the atmosphere control system to provide real-time feedback and automated control.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

2007-07-09
2007-01-3038
Advanced water processors being developed for NASA's Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS), and is based primarily on ISS experience related to the development of the VRA.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-bed (CAMRAS)

2007-07-09
2007-01-3157
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations led by Hamilton Sundstrand is developing an amine based humidity and carbon dioxide (CO2) removal process and prototype equipment for Vision for Space Exploration (VSE) applications. This system employs thermally linked amine sorbent beds operating as a pressure swing adsorption system, using the vacuum of space for regeneration. The prototype hardware was designed based on a two fault tolerant requirement, resulting in a single system that could handle the metabolic water and carbon dioxide load for a crew size of six. Two, full scale prototype hardware sets, consisting of a linear spool valve, actuator and amine sorbent canister, have been manufactured, tested, and subsequently delivered to NASA JSC. This paper presents the design configuration and the pre-delivery performance test results for the CAMRAS hardware.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

2007-09-17
2007-01-3859
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA)- Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Technical Paper

Development Status of an EVA-sized Cycling Amine Bed System for Spacesuit Carbon Dioxide and Humidity Removal

2007-07-09
2007-01-3272
Under a NASA sponsored technology development activity, Hamilton Sundstrand has designed, fabricated, tested and delivered a prototype solid amine-based carbon dioxide (CO2) and water (H2O) vapor removal system sized for Extravehicular Activity (EVA) operation. The prototype system employs two alternating and thermally-linked solid amine sorbent beds to continuously remove CO2 and H2O vapor from a closed environment. While one sorbent bed is exposed to the vent loop to remove CO2 and water vapor, the other bed is exposed to a regeneration circuit, defined as either vacuum or an inert sweep gas stream. A linear spool valve, coupled directly to the amine canister assembly, is utilized to simultaneously divert the vent loop flow and regeneration circuit flow between the two sorbent beds.
Technical Paper

PREOVIDE as an Approach to Integrated Modeling and Simulation

2014-09-16
2014-01-2179
To obtain a system level, integrated perspective on vehicle energy management, the traditional methods for conducting preliminary design, gauging independent requirements, must be abandoned. This method does not capture critical interactions between the various aircraft subsystems. Instead, a more global appreciation for interactions across boundaries needs to be realized with a mosaic scheme, where models are integrated and co-simulated. The advantage of this approach is to enhance the preliminary design stage by predicting integration issues early in the development process. Legacy design practice involved gathering data from multiple vendors in order to produce design iterations. The ability to link models directly is extremely beneficial, as requirements no longer have to be executed independently. This approach reduces cumbersome iterations between model owners and accelerates trade studies.
Technical Paper

Systems Engineering - Directions and Challenges

2014-09-16
2014-01-2214
This article attempts to provide a big picture of systems engineering in both philosophy and engineering perspectives, discusses current status and issues, trends of systems engineering development, future directions and challenges, followed by certain examples.
X