Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Results of VPCAR Pilot Scale and System Level Tests for the Selective Oxidation of Ammonia to Nitrogen and Water

2005-07-11
2005-01-3034
The cost of delivering the payloads to space increases dramatically with distance and therefore missions to deep space place a strong emphasis on reducing launch weight and eliminating resupply requirements. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system, which is being developed for water purification, is an example of this focus because it has no resupply requirements. A key step in the VPCAR system is the catalytic oxidation of ammonia and volatile hydrocarbons to benign compounds such as carbon dioxide, water, and nitrogen. Currently, platinum-based commercial oxidation catalysts are being used for these reactions. However, conventional platinum catalysts can convert ammonia (NH3) to NO and NO2 (collectively referred to as NOX), which are more hazardous than ammonia.
Technical Paper

Chameleon Suit – From Potential to Reality

2004-07-19
2004-01-2293
An important, though often unstated, requirement to achieve NASA’s strategic goals will be an Extravehicular Activity (EVA) system that will let future astronauts work safely and effectively at the chosen destinations without imposing unacceptable burdens on the astronauts or the mission systems that support them. Past studies have shown that this may present an insurmountable challenge if pursued with current technologies and system design concepts. With funding from the NASA Institute for Advanced Concepts (NIAC), Hamilton Sundstrand has been studying a conceptual architecture for future EVA systems to meet this challenge. The Chameleon Suit concept shifts the EVA design paradigm from one in which the pressure garment and life support system are separate, largely independent subsystems to one in which the EVA system integrates distributed life support functions with the pressure suit.
X