Refine Your Search

Topic

Search Results

Technical Paper

A Tire Work Load (TWL) Based Controller for Active Independent Front Steering System (AIFS)

2020-04-14
2020-01-0648
Vehicle Handling performance depends on many parameters. One of the most important parameters is the dynamic behavior of the steering system. However, steering system had been enhanced thoroughly over the past decade where Active Front Steering (AFS) is now present and other system as Active Independent Front Steering (AIFS) is currently in the research phase. Actually, AFS system adopt the front wheels’ angles base on the actual input steering angle from the driver according to vehicle handling dynamics performance. While, the AIFS controls the angle of each front wheel individually to avoid reaching the saturation limits of any of the front wheels’ adhesion. In this paper modeling and analysis of an AIFS is presented with Tire Work Load (TWL) based controller. Magic Formula tire model is implemented to represent the tire in lateral slip condition.
Technical Paper

Active Suspension Design for Passenger Cars Using LQR and GA with PID Controller

2007-05-15
2007-01-2423
In this paper, the performance tradeoffs in the design of electronically controlled suspension systems are theoretically studied. Using quarter car model, a new treatment procedure for the control laws is introduced using fully active suspension system with two control strategies. The first strategy is considered for vehicle vibration isolation due to random road excitation only. The second strategy is considered to perform a zero steady-state suspension deflection due to body vehicle attitude variation during maneuvering, braking and aerodynamics as well as vibration isolation due to random road excitation. The two strategies are achieved by using two different optimization techniques combined with PID (Proportional-Integral-Derivative) compensator. The first technique is based on Linear Quadratic Regulation (LQR) technique and the second technique is based on Genetic Algorithm (GA).
Technical Paper

Influence of Active Suspension Preview Control on the Vehicle Lateral Dynamics

2007-05-15
2007-01-2347
The dynamics of vehicles became one of the most important aspects for current developments of electronically controlled steering, suspension and traction/braking systems. However, most of the published research on vehicle maneuverability doesn't take into account the effect of the dynamic tire load and its variation on uneven roads. Clearly, it was stated that using a suitable active suspension system could reduce this dynamic tire load. This dynamic tire load is playing a vital role as it is the major link between the vertical and lateral forces exerted on the road, which affects the lateral dynamics of the vehicle. In this paper, a practical hydro-pneumatic limited bandwidth active suspension system with and without wheelbase preview control is used to study its influence on the vehicle stability in lateral direction. The model is a longitudinal half car with four degrees of freedom.
Technical Paper

Vehicle Alternator Electromagnetic Noise Characteristics Determination

2009-05-19
2009-01-2188
In the design of recreational vehicle alternators, a particular challenge arises from marketing and engineering teams' desire to ensure that their products meet “best in class” sound quality characteristics. Furthermore, it is desirable to know these characteristics in measurable engineering terms in the product design stage, preferably before prototypes are built and tested. However, the aim of this paper is to investigate experimentally the electromagnetic sound quality characteristics of a vehicle alternator with the view of determination. For this reason, a special test rig was designed to simulate the alternator electromagnetic noise source. The results indicate that significant information can be obtained for this source. This can be an effective way to control this generated noise and consequently improve the vehicle alternator sound quality and look promising.
Technical Paper

Plug-In Hybrid Vehicle Induction Motor Aerodynamic Noise Evaluation

2009-05-19
2009-01-2148
Plug-in hybrid vehicles connect to the power grid while parked so they can operate on electricity from the grid as well as on petroleum-based fuel. This distinguishes them in a fundamental way from the plug-less hybrid vehicles currently produced or planned by auto-marker which rely 100% on the petroleum-based fuel. A plug-in hybrid can reduce emissions. However, the aim of this paper is to investigate experimentally the aerodynamic noise performance of a plug-in hybrid vehicle induction motor with the view of evaluation. For this reason, a special test rig was developed to simulate the motor aerodynamic noise source. The results indicate that significant information can be obtained for this source. This can be an effective way to control this generated noise and consequently reduce the vehicle interior and exterior noises and look promising.
Technical Paper

Performance of Active Suspension with Fuzzy Control

2009-05-13
2009-01-1614
Vehicle suspension along with tires and steering linkages is designed for safe vehicle control and to be free of irritating vibrations. Therefore the suspension system designs are a compromise between ride softness and handing ability. However, this work is concerned with a theoretical investigation into the ride behavior of actively suspended vehicles. It is based on using fuzzy logic control (FLC) to implement a new sort of active suspension system. Comparisons between the behavior of active suspension system with FLC with those obtained from active systems with linear control theory (LQR), ideal skyhook system and the conventional passive suspension systems. Results are introduced in such a way to predict the benefits that could be achieved from fuzzy logic system over other competing systems. Furthermore, a controller is designed and made by using results of FLC system, theoretical inputs are used to examine the validity of this controller.
Technical Paper

Dynamic Modeling of Vehicle Gearbox for Early Detection of Localized Tooth Defect

2008-10-07
2008-01-2630
Dynamic modeling of the gear vibration is a useful tool to study the vibration response of a geared system under various gear parameters and operating conditions. An improved understanding of vibration signal is required for early detection of incipient gear failure to achieve high reliability. However, the aim of this work is to make use of a 6-degree-of-freedom gear dynamic model including localized tooth defect for early detection of gear failure. The model consists of a gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and modifications. The results indicate that the simulated signal shows that as the defect size increases the amplitude of the acceleration signal increases. The crest factor and kurtosis values of the simulated signal increase as the fault increases.
Technical Paper

The Importance of Vehicle Gear Tooth Meshing Stiffness in Gear Tooth Damage Quantification

2008-10-07
2008-01-2631
The early detection of incipient failure in a mechanical system is of great practical importance as it permits scheduled inspections without costly shutdowns and indicates the urgency and locations for repair before a system incurs catastrophic failure. However, in this work a new technique for processing vibration data to quantify the level of damage, cracks only, in a gear system. The technique consists of a nonlinear numerical optimization. The optimization uses a dynamic model of the gear mesh used in vehicle gearbox and forms an estimate of both time-varying and frequency-varying mesh stiffness that best corresponds to the given set of vibration data. The procedure developed in this study can be applied as a part of either an onboard machine health monitoring system or a health diagnostic system used in the regular maintenance.
Technical Paper

Influence of Surface Modifications on Vehicle Disc Brake Squeal

2009-06-15
2009-01-1977
Squeal from brakes is a problem in the automotive industry and large efforts are made to understand the squeal tendencies. The approach taken is mainly to change the design of the caliper, fine-tune the brake pad material and finally to trim the introducing shims on the backside of the pads. Despite these efforts still no general solutions exist. To advance the situation, a deeper understanding of the actual source of excitation of the sound in the friction interface is needed. However, in the present investigation the surfaces modifications of brake disc and pad have been tested with respect to the understanding properties. The surfaces modifications are slotted pad material and coated disc. All tests have been made in a brake test stand consisting of a complete front wheel corner of a vehicle. The changes have resulted in a significant understand of the generated noise.
Technical Paper

Road Traffic Control by Regulating Street Noise Propagation in an Urban Area

2009-11-02
2009-01-2795
Recently, the control of traffic flow has been proposed using several types of criteria (e.g. minimum-time control, minimum fuel control and so on). Most recently, an environmental noise pollution problem caused by the road traffic is being aggravated more and more by the consolidation and expansion of roadway system particularly in urban areas. However, the objective of this paper is to control road traffic flow by regulating traffic noise propagation in an urban area in Cairo city. The results of traffic noise prediction obtained by trending of the experimental data collecting by systematic noise measurement and the evaluation of the traffic noise which is in close connection with physical parameters of traffic flow and noise propagation characteristics is presented. The analysis of road traffic flow noise control is based on the mixed integer non-linear programming technique, where the optimal control strategy is used.
Technical Paper

On the Analysis of Drum Brake Squeal Using Finite Element Methods Technique

2006-10-31
2006-01-3467
Many basic studies were conducted to discover the main reason for squeal occurrence in both disc and drum brake systems. As, it is well-known that the squealed brake system is more effective than the non-squealed brake system and it is also a common discomfort. So, cancellation of the squeal is not preferable, however, elimination of the brake squeal is a favorable. An approach to study the drum brake squeal is presented based mainly on the Finite Element Method (FEM) representation. The brake system model is based also on the model information extracted from finite element models for individual brake components. This finite element method (FEM) was used to predict the mode shape and natural frequency of the brake system after appropriate verification of FEM.
Technical Paper

Analysis of Ventilated Disc Brake Squeal Using a 10 DOF Model

2012-09-17
2012-01-1827
Squeal of disc brakes is considered as a main source of discomfort for passengers. Typically 1 to 4 kHz noise is considered low frequency squeal and ≻8 kHz noise is considered high frequency squeal. It is a significant problem in passenger vehicles for the comfort of the passengers and a significant financial problem for industry too. Many manufacturers of brake pad materials spend up to fifty percent of their engineering budgets on noise, vibration and harshness (NVH) issues. Squeal noise is strongly correlated to the squeal index and degree of instability of the brake system assembly. Decreasing this squeal noise to some extent during braking is very important matter for the comfort of passengers. So, a mathematical prediction model of 10-degree-of-freedom has been developed to study the effect of different brake components parameters on the degree of instability and squeal index of the brake system.
Technical Paper

Investigation of Different Parameter Based Control Strategies for Active Independent Front Steering (AIFS) System

2021-04-06
2021-01-0967
The previous research work on Active Independent Front Steering (AIFS) system concluded an enhanced vehicle response and tire adhesion utilization. Some research emphasizes the importance of Tire Work load (TWL) in the generation of maximum possible tire forces that ensures vehicle controllability and stability. In this study, a mathematical model is constructed to investigate the effect of TWL as a parameter on AIFS performance. Toward such a target, a new Fuzzy control strategy is developed based on TWL and vehicle yaw rate as control inputs for the AIFS controller. Unfortunately, the TWL is not a measurable parameter or even easy to be estimated. Consequently, another control strategy was implemented based on slip angle and vehicle yaw rate as inputs for the AIFS controller.
Technical Paper

Studying the Effect of Pad Contact Surface on the Frictional Behavior and Acoustic Noise Response for Heavy Duty Vehicle Brakes Using FAST Machine

2006-09-12
2006-01-3131
The influence of the pad contact surface deformation for vehicle brakes on its frictional behavior and friction induced noise is presented in this paper. Friction composite samples of organic binder-type brake pad have been curried out at 17 MPa and 180 °C for heavy-duty applications. However, samples with different surface shapes (solid, drilled and grooved) have been formed and tested tribologically to satisfy suitable friction coefficient at low noise level. A FAST machine was used to find out the accurate friction response at steady frictional moment. Friction acoustic noise has been carried out on the test machine using the sound pressure level meter. Analyses of the obtained results showed that the feature of the pad material surface has a significant influence on the brake frictional stability and noise emission. The results also confirmed that; adding a groove to the brake lining in heavy-duty vehicles gives a better brake performance and hence it is highly recommended.
Technical Paper

Vibration Control of Active Vehicle Suspension System Using Optimized Fuzzy-PID

2018-04-03
2018-01-1402
In this paper, a fuzzy-PID controller is applied in a half vehicle active suspension system to enhance vibration levels of vehicle chassis and passenger seat. The fuzzy-PID controller consists of fuzzy and PID connecting in a series manner, the fuzzy output is considered as the PID input. Genetic Algorithm (GA) is selected to tune controller parameters to obtain optimal values that minimize the objective function. The equations of motion of five-degrees-of-freedom active half-vehicle suspension system are derived and simulated using Matlab/Simulink software. Double bumps and random road excitations are used to study the performance of suspension systems including bounce and pitch motion. The performance of the active suspension system using optimized fuzzy-PID controller is compared with conventional passive to show the efficiency of the proposed active suspension system.
Technical Paper

Performance Evaluation of Magnetorheological Limited Slip Differential for Automotive Applications

2018-04-03
2018-01-1297
The present work investigates the effect of magnetorheological fluid (MRF) on limited slip differential (LSD) system for automotive applications to improve torque distribution which influences traction and maneuverability. The proposed differential system uses a magnetorheological fluid which permits to control the locking torque effectively and then improve the vehicle traction characteristics. To evaluate the proposed system, a prototype model involves some rotating clutches submerged in MRF associated with an electromagnet coil was built. Experimental tests were carried out in two cases, first case by applying mechanical force on the friction clutches and the second by applying magnetic field to change the MRF viscosity. The yield stress of MRF depends on the magnetic field applied by the electromagnet by varying electric current. The controllable yield stress generates friction force on the rotating clutches surfaces to transmit torque.
Technical Paper

On The Integration of Actively Controlled Longitudinal/Lateral Dynamics Chassis Systems

2014-04-01
2014-01-0864
Integral Control strategy for vehicle chassis systems had been of great interest for vehicle designers in the last decade. This paper represents the interaction of longitudinal control and lateral control. In other words the traction control system and handling control system. Definitely, tire properties are playing a vital role in such interaction as it is responsible for the generated forces in both directions. A seven degrees of freedom half vehicle model is derived and used to investigate this interaction. The vehicle body is represented as a rigid body with three degrees of freedom, lateral and longitudinal, and yaw motions. The other four degrees are the two rotation motion of the front wheel and the rear wheel. This two motions for each wheel are spin motion and the steering motion. The traction controller is designed to modulate engine torque through adjusting the throttle angle of the engine upon utilized adhesion condition at the driving road wheels.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
Technical Paper

Compound Mass Liquid Column Damper for Attenuating the Vibration of the Structures

2020-10-14
2020-01-5047
This study deals with the mitigation of the vibration of the structure using a compound mass liquid column damper (MLCD). To study the damping efficiency of the MLCD, the mathematical model of the single degree of freedom structure integrated with MLCD including the damping due to the moving mass in the horizontal portion of the damper is derived. The equivalent-damping factor of the MLCD is determined by simulating the interaction between the moving mass and the liquid using the fluid-structure interaction (FSI) technique. A 3D FSI model is solved numerically using the ANSYS Workbench-CFX package. The global search optimization algorithm is applied to find the optimum tuning frequency and the optimum mass diameter ratio over a wide range of mass ratio and excitation amplitude. The optimization issue is solved with considering the limits of the maximum displacement of the liquid and the mass.
Technical Paper

Theoretical Investigation of Spokes Geometry of Non-Pneumatic Tires for Off-Road Vehicles

2021-04-06
2021-01-0331
Extensive studies of off-road non-pneumatic tires (NPTs) were conducted for light and heavy equipment due to their advantages over conventional pneumatic tires in terms of low rolling resistance, thus no need for air pressure maintenance. Finite element (FE) simulations of NPT contact pressure, contact shear stress, vertical stiffness, von mises stress, and rolling resistance were performed using ABAQUS software in a series of vertical loads to simulate tire models of three different spokes geometries on unpaved soil to verify NPT performance under different conditions. The spokes geometries were hexagonal (honeycomb) spoke, hexagonal re-entrant (Lattice) spoke and spoke with curvature called spoke pairs. It was found that the rolling resistance of the honeycomb structure has the lowest value, while the contact shear stress and contact pressure were the highest.
X