Refine Your Search

Topic

Search Results

Journal Article

An Application of the Particle Velocity Transfer Path Analysis to a Hybrid Electric Vehicle Motor Sound

2013-05-13
2013-01-1999
A pioneering approach to implement transfer path analysis (TPA) is proposed in this paper through applying it to an automobile. We propose to use particle velocity as a measure of TPA, in addition to using sound pressure as a conventional measure for TPA. These two quantities together will give a comprehensive and complete definition of sound. Although sound pressure is a scalar, while particle velocity is a vector, it is also proposed that the same technique of the conventional sound pressure TPA should be independently applicable to each component of particle velocity vector. This has been experimentally verified with a study on our test box system. In this paper, we apply the proposed TPA to an actual vehicle to examine its applicability, advantages and limitations. The driving motor sound of a hybrid electric vehicle is chosen as the case study. A tri-axial particle velocity sensor which also measures sound pressure at the same point is utilized in the experiment.
Journal Article

Automatic Curve Deceleration System Using Enhanced ACC with Navigation System

2008-04-14
2008-01-0922
We have developed a system for automatic deceleration upon entering curves to prevent collisions on tight curves on high-ways. The navigation system is used to determine safe speed negotiating the curve, defined as a speed that will keep lateral acceleration within a settled value. The navigation system sends the curve radius to a controller, which calculates the safe speed for the curve. The controller then sends the speed command to the ACC system, which adjusts the vehicle speed. One of the important features in this system is the estimation of the vehicle position, in terms of its distance from the curve entrance. Navigation systems have a certain amount of dispersion in positional accuracy. A front camera is used in our system to decrease this dispersion. This camera detects lane markers (white lines, raised pavement markers, etc.) using our line recognition technologies1).
Technical Paper

An Adaptive Engine Control Algorithm for Acceleration Response

1991-02-01
910256
Chassis back and forth oscillation caused by sudden engine torque increase tends to occur, according to the characteristic of vehicle dynamics. This oscillation is called an acceleration surge and gives a vehicle driver a feeling of discomfort. This paper provides two control methods which can change the characteristic of vehicle acceleration response in order to suppress acceleration surge and to macth with driver's preference. The first control method is an acceleration servo method which is composed of control reference model and ignition timing control. The second control method is a variable response characteristic control algorithm. We treat the controlled object as the second order model with time delay, and assign the characteristic roots of transfer function in order to obtain the desired response.
Technical Paper

Research on Subjective Rating Prediction Method for Ride Comfort with Learning

2020-09-30
2020-01-1566
Suspension is an important chassis part which is vital to ride comfort [1]. However, it is difficult to achieve our targeted comfortability level in a short time. Therefore, improving efficiency of damper development is our primary challenge. We have launched a project which aims to reduce the workload on developing dampers by introducing analytical approaches to the improvement of ride comfort. To be more specific, we have been putting effort into developing the damping force prediction, the vehicle dynamics prediction and subjective rating prediction. This paper describes subjective rating prediction method which output a subjective rating corresponding to the physical value of the vehicle dynamics with deep learning. As a result of verification using objective data which was not used for learning process, DNN (Deep Neural Network) prediction method could fairly precisely predict subjective rating of the expert driver.
Technical Paper

Development of a Combined Battery System for Electric Vehicles with Battery Lifespan Enhancements

2018-04-03
2018-01-0448
We propose a combined battery system (CBS) for low cost electric vehicles (EVs) to enhance battery life. The EVs popularly called as Neighborhood Electric Vehicle or Low-Speed-Electric-Vehicle are spreading in developing countries. Conventionally the EVs batteries consist of high energy density cells, and we call it as energy cells (EC). A major issue with the EVs is high operational costs mainly due to high battery cost and short lifespan of the ECs. In this study, we develop a CBS consisting of a combination of following two kinds of batteries: i) EC which is the main energy source for the EV, and ii) a battery having high power density also called as power cells (PC) which is more suitable to bear high charge-discharge currents. The key feature of the proposed system is to minimize the size of additional battery by using our high power lithium ion battery. We performed experiments to estimate EC life for several capacity values of the PC.
Technical Paper

Computer-Aided Calibration Methodology for Spark Advance Control Using Engine Cycle Simulation and Polynomial Regression Analysis

2007-10-29
2007-01-4023
The increasing number of controllable parameters in modern engine systems has led to increasingly complicated and enlarged engine control software. This in turn has created dramatic increases in software development time and cost. Model-based control design seems to be an effective way to reduce development time and costs and also to enable engineers to understand the complex relationship between the many controllable parameters and engine performance. In the present study, we have developed model-based methodologies for the engine calibration process, employing engine cycle simulation and regression analysis. The reliability of the proposed method was investigated by validating the regression model predictions with measured data.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Fractal Dimension Growth Model for SI Engine Combustion

2004-06-08
2004-01-1993
Time-resolved continuous images of wrinkling flame front cross-sections were acquired by a laser-light sheet technique in an optically accessible spark ignition engine. The test engine was operated at various engine speeds and compression ratios. The fractal dimension of the curve, D2, was measured in a time series for each cycle. Analysis of the data shows that as the flame propagates the fractal dimension, D2, is close to unity a short time after spark ignition and then increases. Examination of the relationship between the growth rate of the fractal dimension, ΔD2/Δt, and D2 reveals that the higher D2 is, the lower ΔD2/Δt becomes. An Empirical equation for ΔD2/Δt was derived as a function of the ratio of the turbulence intensity to the laminar burning velocity and pressure. This model was tested in an SI engine combustion simulation, and results compared favorably with experimental data.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Model-Based Technique for Air-Intake-System Control Using Thermo-Fluid Dynamic Simulation of SI Engines and Multiple-Objective Optimization

2011-10-06
2011-28-0119
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper

Transient Vibration Simulation of Motor Gearbox Assembly Driven by a PWM Inverter

2017-06-05
2017-01-1892
Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
Technical Paper

Model-Based Methodology for Air Charge Estimation and Control in Turbocharged Engines

2013-04-08
2013-01-1754
The purpose of this study is to develop model-based methodologies which employ thermo-fluid dynamic engine simulation and multiple-objective optimization schemes for engine control and calibration, and to validate the reliability of the method using a dynamometer test. In our technique, creating a total engine system model begins by first entirely capturing the characteristics of the components affecting the engine system's behavior, then using experimental data to strictly adjust the tuning parameters in physical models. Engine outputs over the full range of engine operation conditions as determined by design of experiment (DOE) are simulated, followed by fitting the provided dataset using a nonlinear response surface model (RSM) to express the causal relationship among engine operational parameters, environmental factors and engine output. The RSM is applied to an L-jetronic® air-intake system control logic for a turbocharged engine.
Technical Paper

Water Recycling System for CELSS Environment in Space

1990-07-01
901208
System configurations of water recycling for space use have been continued through theoretical and experimental studies. The water recycling system plays a central role in a Closed Ecological Life Support System (CELSS) which offers necessary environment and life styles in closed environment such as space stations, lunar bases, etc.. Membrane technology is a possible candidate for purifying waste water produced by crew use facility, plant cultivation facility, etc. In considerations of the system compactness realizing energy saving, membrane distillation has been revealed to be a suitable purification process. Ground experiments has been performed using membrane filtration processes and membrane distillation process. Thermopervaporation technology with hydrophobic membrane is utilized in the distillation process. The energy saving is achieved by thermal return of condensation energy.
Technical Paper

Model-Based Calibration Process for Producing Optimal Spark Advance in a Gasoline Engine Equipped with a Variable Valve Train

2006-10-16
2006-01-3235
The increasing number of controllable parameters in modern engine systems leads to complicated and enlarged engine control software. This in turn has led to dramatic increases in software development time and costs in recent years. Model-based control design seems to be an effective way to reduce development time and costs. In the present study, we have developed model-based methodologies for the engine calibration process using an engine cycle simulation technique combined with a regression analysis of engine responses. From the results it was clear that the engine cycle simulation technique was useful in the engine calibration process, if the empirical parameters included in physical models were adjusted at typical sampling-points in several engine speeds and loads. The cycle simulation produced a multi-dimensional MBT map, and a response surface method was employed in the modeling of the engine map dataset using a polynomial equation.
Technical Paper

Evaluation of Hitachi Electric Vehicle Combined Battery System Lifespan in India

2018-04-03
2018-01-0447
We have developed a drive cycle (DC) to test Hitachi’s combined battery system (CBS) for electric vehicles (EVs) having battery lifespan enhancements. Conventionally EV batteries consist of high energy density cells, and we call them as energy cells (EC). A major issue with the EVs is high operational costs mainly due to short lifespan of the ECs. CBS almost doubles the EC and thus overall battery system lifespan, as per the evaluation over a WLTP based method. We want to test the CBS under Indian conditions which has predominantly hot weather, and traffic jam scenarios. Battery deterioration and thus its lifespan is sensitive to traffic conditions and ambient temperature. Hence, it was needed to evaluate the CBS over an Indian DC and use 40°C as ambient temperature. However, it was difficult to carry out the tests since there is no standard Indian DC for small / light weight four wheelers.
Technical Paper

Thyristor Chopper Equipment Controlled by Magnetic Phase Shifter for Battery Forklift

1979-02-01
790896
Magnetic Phase Shifter is the controlling element to make integral action, excellent in anti-noise performance and makes high stable and reliable controlling device. (1)* We have developed a new compact thyristor chopper equipment controlled by Magnetic Phase Shifter. This equipment has simple controlling circuit and many functions such as wide range duty factor control, adjustable plugging brake, speed up by field weakening, anti-rollback control and so on.
Technical Paper

A Totally Integrated Vehicle Electronic Control System

1988-11-01
881772
A totally integrated vehicle electronic control system is described, which optimizes vehicle performance through use of electronics. The system implements efficient coordination of functions of the engine, drive-train, brakes, steering, and suspension control subsystems to give a smoother ride, better handling and greater safety. The principles of the system are based on control and stability augmentation strategies. Each subsystem has two observers which control the force of the actuators according to the vehicle dynamics. The system features a driver support system which allows the average driver to employ the full performance potential of the vehicle in exceptional situations, and an artificial response control system to ensure optimum response and comfort. Application of the system allows the driver to experience a new level of performance and a marked improvement in handling quality and ride comfort.
Technical Paper

Controller Grid: Real-Time Load Balancing of Distributed Embedded Systems

2007-04-16
2007-01-1615
The concept of a “controller grid”, which makes effective use of computational resources distributed on a network while guaranteeing real-time operation, is proposed and applied to realize highly advanced control. It facilitates the total optimization of a plant control and achieves the high efficiency that is not acquired by individual plant optimization. To realize this concept, migration of a control task customized to be executed on one particular microcontroller to another microcontroller is necessary while strictly observing the required response time. Two techniques to meet this requirement are proposed: “task migration” for a control system and “real-time guaranteed scheduling of task migration and execution”. The effectiveness of the controller grid is assessed by applying it in experiments with electronic-throttle-body (ETB) advanced control.
Technical Paper

Compressible Turbulent Flow Analysis on Variable Nozzle Vane and Spacer in Turbocharger Turbine

2000-03-06
2000-01-0526
In order to develop a high-performance turbocharger turbine, compressible turbulent flow analysis is applied to the complicated flow around the nozzle vanes and the spacers. The flow analysis indicates that a combination of a curved nozzle vane and a round spacer causes a low-velocity region at the inner side of the nozzle vane even when the turbine efficiency is highest. As a result of the loss analysis, a teardrop-shaped spacer, which suppresses the low-velocity region and flow separation, is developed, and shown to improve the turbine efficiency. The easiness of the nozzle vane control is also important as well as the high efficiency. The fluid force on the nozzle vane depends on the flow pattern; therefore, the torque about the pivot of the nozzle vane is also numerically calculated.
X