Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Journal Article

Degradation Analysis of Pouch Cell Using High-Energy Cathode Material for Advanced Lithium-ion Battery

2015-04-14
2015-01-1193
Lithium-rich layered oxide, expressed as xLi2MnO3-(1-x) LiMO2 (M = Ni, Co, Mn, etc.), exhibits a high discharge capacity of 200 mAh/g or more and a high discharge voltage at a charge of 4.5 V or more. Some existing reports on cathode materials state that lithium-rich layered oxide is currently the most promising candidate as an active material for high-energy-density lithium-ion cells, but there are few reports on the degradation mechanism. Therefore, this study created a prototype cell using a lithium-rich layered cathode and a graphite anode, and analyzed the degradation mechanism due to charge and discharge. In order to investigate the causes of degradation, changes in the bulk structure and surface structure of the active material were analyzed using high-resolution X-ray diffraction (HRXRD), a transmission electron microscope (TEM), X-ray absorption fine structure (XAFS), and scanning electron microscope/energy dispersive X-ray spectroscopy (SEM-EDX).
Journal Article

Development of Electric Powertrain for CLARITY PLUG-IN HYBRID

2018-04-03
2018-01-0415
Honda has developed the 2018 model CLARITY PLUG-IN HYBRID. Honda’s new plug-in hybrid is a midsize sedan and shares a body platform with the CLARITY FUEL CELL and the CLARITY ELECTRIC. The vehicle’s electric powertrain boosts driving performance as an electric vehicle (EV) over Honda’s previous plug-in hybrid. The CLARITY PLUG-IN HYBRID’s electric powertrain consists of a traction motor and generator built into the transmission, a Power Control Unit (PCU) positioned above the transmission, an Intelligent Power Unit (IPU) fitted under the floor, and an onboard charger fitted below the rear trunk. The PCU integrates an inverter that drives the traction motor, an inverter that drives the generator, and a DC-DC converter to boost battery voltage (referred to as a “Voltage Control Unit (VCU)” below).
Journal Article

Development of New Hydrogen Fueling Method for Fuel Cell Motorcycle

2017-03-28
2017-01-1184
A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
Journal Article

Development of a New Two-Motor Plug-In Hybrid System

2013-04-08
2013-01-1476
A highly efficient two-motor plug-in hybrid system is developed to satisfy the global demands of CO2 reduction. This system switches three operation modes, what is called “EV Drive”, “Hybrid Drive” and “Engine Drive”, to maximize fuel efficiency according to the driving condition of the vehicle. Practical plug-in EV (Electric Vehicle) capability is also realized by adding a high-power on-board charger and a high capacity Li-ion battery to the original system. The outlines of the system components including a newly developed Atkinson cycle engine, a highly efficient electric coupled CVT (Continuously Variable Transmission) with built-in motor and generator, an integrated PCU (Power Control Unit) and an exclusive battery for plug-in HEV (Hybrid Electric Vehicle) are described in this paper. In addition to the switching of three driving modes and the efficiency improvement of each device, cooperative control of the hybrid system is introduced.
Technical Paper

Development of the Variable Valve Timing and Lift (VTEC) Engine for the Honda NSX

1991-01-01
910008
The Honda variable valve timing and lift electronic control system (VTEC) is incorporated in the engine of the NSX sports car that is scheduled for sales in Europe this year. In the process of advancement of Honda's engine technology, VTEC was developed for much higher output and higher efficiency. This is actually the first system in the world that can simultaneously switch the timing and lift of the intake and exhaust valves. This system has made improvements in maximum output at high rpm, and also improved the low rpm range, such as idling stability and starting capability.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Technical Paper

Liquid Phase Thermometry of Common Rail Diesel Sprays Impinging on a Heated Wall

2007-07-23
2007-01-1891
An experimental study was carried out on visualization of liquid phase temperature distributions in high-pressure diesel sprays impinging on a heated wall. Naphthalene/TMPD-exciplex fluorescence method and pyrene-excimer fluorescence method were utilized for the thermometry. The sprays were injected into a high-pressure and high-temperature gaseous environment. The nozzle hole diameter was 0.100 mm or 0.139 mm. The results showed that cool pockets were formed at the tip and in the impinging part of the sprays. The spray for the nozzle with 0.100 mm hole was heated up faster near the nozzle than for the nozzle with 0.139 mm hole.
Technical Paper

Establishment of the Specification Design Technique by Multiple-Purpose Optimization of Sound Proof Package

2007-04-16
2007-01-1544
This paper describes an effective method with statistical energy analysis (SEA) for specifying the vehicle sound proof package that achieves the best balance between light weight and high sound insulation performance. For proposing the sound proof package in the early stages of vehicle development, it is necessary to assess a number of specifications and to pick the best design specifications for weight and sound proof performance. However, there are difficulties in achieving conflicting objectives simultaneously, and acoustic engineers need special technical know-how. In this study, a new automated optimization method is proposed that approaches the problem above. As a result, detailed sound insulation package specifications, including the thickness distribution of each part, can be obtained and these can be easily transferred to drawings. Moreover, the accuracy of this method is proven by a reduction in vehicle interior cabin sound pressure level
Technical Paper

Study of Power Generation Loss Decrease in Small Gas Engine Cogeneration

2008-09-09
2008-32-0044
Power generation systems employed in small gas engine cogeneration were examined to compare losses in the converter, which converts three-phase alternator power to direct current (DC) voltage, and losses in the inverter, which converts power to high-quality alternating current (AC) voltage that can be connected into electric utility power lines. It is a characteristic of alternators that their efficiency and output voltage decline in the heavy load range. It was found, therefore, that step-down methods using thyristors operate in a low-efficiency range in order to provide a satisfactory supply of the targeted DC output voltage. Use of switching regulator methods, on the other hand, can generate the target voltage by regulating a switching device after first storing the alternator output in a choke coil. It was found, therefore, that these use the high-efficiency range of the alternator. The converter was found to have a resulting loss decrease of 19.4 W.
Technical Paper

Development of Hollow, Weld-able Die-Cast Parts for Aluminum Motorcycle Frames

2003-09-15
2003-32-0055
Using sand cores, the weld-able, hollow die-cast parts have been developed. For casting, the transition flow filling method is applied to reduce gas containment and to minimize damages to the core. In designing the products, the newly developed core stress prediction system by melt pressure distribution and the newly developed in-product gas containment prediction system have been applied. The hollow die-cast frame made by the new method attains a 30% increase in rigidity and 1kg reduction of weight.
Technical Paper

Control Device of Electronically Controlled Fuel Injection System of Air-cooled Engines for Small Motorcycles

2004-03-08
2004-01-0901
In conventional electronically controlled fuel injection systems, when the battery is inadequately charged, the small amount of electric power generated from the alternator by the kick starter operation is consumed by all electrical loads including the battery. This causes a voltage drop, hence the fuel injection system does not function due to a power shortage. To eliminate the power shortage, an installed relay circuit opens all electric loads other than the fuel injection system. This allows the fuel injection system to use all the electric power generated by the kick starter operation aided through using an additionally incorporated condenser. This type of electric power control system has been incorporated into the ECU. Thus, the control system has been realized that permits starting of an engine by using the kick-starter even when the battery is completely discharged.
Technical Paper

Electric Power Control System for a Fuel Cell Vehicle Employing Electric Double-Layer Capacitor

2004-03-08
2004-01-1006
A fuel-cell-vehicle has been provided with an electric-double-layer-capacitor system (capacitor) to act as a back-up power source. The fuel cells and the capacitor have different voltages when the system is started, and for this reason the system could not be reconnected by relays. A VCU (Voltage and current Control Unit) has been positioned in the path of electrical connection between the fuel cells and the capacitor as a method of dealing with this issue. The VCU enables the charging of the capacitor to be controlled in order to equalize the voltage of the two power sources and allow a connection.
Technical Paper

Improvement of visibility for vulnerable parties in traffic accidents

2001-06-04
2001-06-0142
More than half of fatalities in traffic accidents in Japan are the vulnerable parties in such accidents (pedestrians, motorcycles, bicycles). In most of these accidents, the cause is collision involving automobiles. Therefore, reasoning that early detection of such vulnerable parties would lead to a reduction in accidents, we conducted research on the following three systems: - Honda Night Vision System - For night-time detection of pedestrians using infrared cameras. - Active Headlights - For assuring night-time field of vision by directing illumination in the direction of vehicle travel through lights coupled with steering wheel turn and so on. - Inter-Vehicle Motorcycle-Automobile Communication System (IVCS) - Notifies drivers of each other's presence by providing information through communications systems installed on both vehicles. The results from research on these systems show that their use can be expected to have a positive effect in reducing the occurrence of accidents.
Technical Paper

The Effects of Engine Speed and Injection Pressure Transients on Gasoline Direct Injection Engine Cold Start

2002-10-21
2002-01-2745
Results are presented from an experimental study of the effects of engine speed and injection pressure transients on the cold start performance of a gasoline direct injection engine operating on iso-octane. The experiments are performed in an optically-accessible single-cylinder research engine modified for gasoline direct injection operation. In order to isolate the effects of the engine speed and injection pressure transients, three different cold start simulations are used. In the first cold start simulation the engine speed and injection pressure are constant. In the second cold start simulation the injection pressure is constant while the engine speed transient of an actual cold start is simulated. In the third cold start simulation both the engine speed and the injection pressure transients of an actual cold start are simulated.
Technical Paper

Development of a Magnetic Coupling Water Pump for a Four-Stroke 50cm3 Scooter Engine

2002-03-04
2002-01-0858
In the development of a magnetic-coupling water pump, the pulling-out (disengagement) of a coupling that led to the stopping of an impeller was a concern. Upon analysis of the behavior of the magnetic coupling, presence of two types of the pulling-out was found, that is, the pulling-out resulting from a lack of transfer torque in the high-speed revolutions and the pulling-out due to the resonance of an inner magnet and an outer magnet. Main factors that affect the pulling-out are the angular velocity input to the drive side, the moment of inertia of the driven side, characteristics of the magnetic coupling, and a damping from coolant. Using a measurement and simulation of the behavior of the water pump, factors were analyzed and the process of pulling-out was clarified. As a result, design specifications that prevented the pulling-out were established.
X