Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Journal Article

Hydrogen Embrittlement of Commercially Produced Advanced High Strength Sheet Steels

2010-04-12
2010-01-0447
The susceptibility of Advanced High Strength Steels (AHSS) to hydrogen embrittlement (HE) was evaluated on selected high strength sheet steels (DP 600, TRIP 780, TRIP 980, TWIP-Al, TWIP, and Martensitic M220) and the results were compared to data on a lower strength (300 MPa tensile strength) low carbon steel. Tensile samples were cathodically charged and then immediately tensile tested to failure to analyze the mechanical properties of the as-charged steel. The effects of hydrogen on deformation and fracture behavior were evaluated through analysis of tensile properties, necking geometry, and SEM images of fracture surfaces and metallographic samples of deformed tensile specimens. The two fully austenitic TWIP steels were resistant to hydrogen effects in the laboratory charged tensile samples.
Journal Article

Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

2013-09-17
2013-01-2301
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

A Balanced Approach for Securing the OBD-II Port

2017-03-28
2017-01-1662
The On-Board Diagnostics II (OBD-II) port began as a means of extracting diagnostic information and supporting the right to repair. Self-driving vehicles and cellular dongles plugged into the OBD-II port were not anticipated. Researchers have shown that the cellular modem on an OBD-II dongle may be hacked, allowing the attacker to tamper with the vehicle brakes. ADAS, self-driving features and other vehicle functions may be vulnerable as well. The industry must balance the interests of multiple stakeholders including Original Equipment Manufacturers (OEMs) who are required to provide OBD function, repair shops which have a legitimate need to access the OBD functions, dongle providers and drivers. OEMs need the ability to protect drivers and manage liability by limiting how a device or software application may modify the operation of a vehicle.
Journal Article

Development of a Lube Filter with Controlled Additive Release for Modern Heavy Duty Diesel Engines Utilizing EGR

2008-10-07
2008-01-2644
As on-highway heavy-duty diesel engine designs have evolved to meet tighter emission regulations, the crankcase environment for heavy-duty engine lubricants has become more challenging. The introduction of Exhaust Gas Recirculation (EGR) has allowed for significant reductions of exhaust emissions, but has led to increased oxidation and acid build-up in the lubricant. Engine lubricant quality is important to help ensure engine durability, engine performance, and reduce maintenance downtime. Increased acidity and oxidation accelerate the rate at which the lubricant quality is degraded and hence shorten its' useful life. This paper explores the use of a lube filter with a controlled additive release to maintain lubricant quality.
Journal Article

Incorporation of Atmospheric Neutron Single Event Effects Analysis into a System Safety Assessment

2011-10-18
2011-01-2497
Atmospheric Neutron Single Event Effects (SEE) are widely known to cause failures in all electronic hardware, and cause proportionately more failures in avionics equipment due to the use altitude. In digital systems it is easy to show how SEE can contribute several orders of magnitude more faults than random (hard) failures. Unfortunately, current avionics Safety assessment methods do not require consideration of faults from SEE. AVSI SEE Task Group (Aerospace Vehicle Systems Institute Committee #72, on Mitigating Radiation Effects in Avionics) is currently coordinating development of an atmospheric Neutron Single Event Effects (SEE) Analysis method. This analysis method is a work in progress, in close collaboration with SAE S-18 and WG-63 Committees (Airplane Safety Assessment Committee). The intent is to include this method as part of current revisions to ARP4761 (Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment).
Journal Article

Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts

2011-10-18
2011-01-2643
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV - April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
Journal Article

NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

2011-10-18
2011-01-2716
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
Journal Article

Modeling Weather Impact on Ground Delay Programs

2011-10-18
2011-01-2680
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Journal Article

Incorporating Atmospheric Radiation Effects Analysis into the System Design Process

2012-10-22
2012-01-2131
Natural atmospheric radiation effects have been recognized in recent years as key safety and reliability concerns for avionics systems. Atmospheric radiation may cause Single Event Effects (SEE) in electronics. The resulting Single Event Effects can cause various fault conditions, including hazardous misleading information and system effects in avionics equipment. As technology trends continue to achieve higher densities and lower voltages, semiconductor devices are becoming more susceptible to atmospheric radiation effects. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered. The purpose of this paper is to describe a process to incorporate the SEE analysis into the development like-cycle. Background on the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions is provided.
Journal Article

Characterization of Advanced High Strength Steel Sheets in View of the Numerical Prediction of Sidewall Curl

2013-01-21
2012-01-2326
In this study, a procedure for characterizing advanced high strength steel sheets is presented in view of determining the material parameters for constitutive models that can be used for accurate prediction of springback and sidewall curl. The mechanical properties of DP980 and TRIP780 sheets were obtained experimentally, and their cyclic tension-compression behaviour was modeled with the Chaboche nonlinear kinematic hardening model and the Yoshida-Uemori two-surface plasticity model that are implemented in LS-DYNA. The unloading moduli were determined from monotonic tension tests at various prestrain levels. An inverse approach based on linear and quadratic response surfaces created by Sequential Strategy with Domain Reduction (SRSM) methodology using LS-OPT software was used and investigated to identify specific material parameters in each constitutive model.
Technical Paper

Options for Transpiration Water Removal in a Crop Growth System Under Zero Gravity Conditions

1991-07-01
911423
The operation of a crop growth system in micro-gravity is an important part of the National Aeronautics and Space Administration's Closed Ecological Life Support System development program. Maintaining densely arrayed plants in a closed environment imposed to induce high growth rates must be expected to result in substantial levels of water transpiration rate. Since the environmental air is recirculated, the transpiration water must be removed. In an operating CELSS, it is expected that this water will provide potable water for use of the crew. There is already considerable knowledge about water removal from crew environmental air during orbital and transfer activities, and the difference between the conditions of the described requirement and the conditions for which experience has been gained is the quantities involved and the reliability implications due to the required periods of operation.
Journal Article

Autonomy and Intelligent Technologies for Advanced Inspection Systems

2013-09-17
2013-01-2092
This paper features a set of advanced technologies for autonomy and intelligence in advanced inspection systems of facility operations. These technologies offer a significant contribution to set a path to establish a system and an operating environment with autonomy and intelligence for inspection, monitoring and safety via gas and ambient sensors, video mining and speech recognition commands on unmanned ground vehicles and other platforms to support operational activities in the Cryogenics Test bed and other facilities and vehicles. These advanced technologies are in current development and progress and their functions and operations require guidance and formulation in conjunction with the development team(s) toward the system architecture.
X