Refine Your Search

Topic

Search Results

Journal Article

Optimization Design of a Six-Point Powetrain Mounting System with Flexible Support Rod

2014-04-01
2014-01-1682
NVH quality is one of the most important criteria by which people judge the design of a vehicle. The Powertrain Mounting System (PMS), which can reduce the vibration from engine to vehicle cab as well as the inside noise, has attained significant attention. Much research has been done on the isolation method for three- and four-point mounting. But the six-point mounting system, which is usually equipped in commercial vehicle, is seldom studied and should be paid more attention. In this paper, the support rod installed on the upside of the transmission case is considered as a flexible body. Thus a rigid-flexible coupling model of PMS is established and the necessity of the established model is analyzed by comparing the simulation results of the new model and those of the conventional model.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Modeling Air-Spring Suspension System of the Truck Driver Seat

2014-04-01
2014-01-0846
The suspension system of a heavy truck's driver seat plays an important role to reduce the vibrations transmitted to the seat occupant from the cab floor. Air-spring is widely used in the seat suspension system, for the reason that its spring rate is variable and it can make the seat suspension system keep constant ‘tuned’ frequency compared to the conventional coil spring. In this paper, vibration differential equation of air-spring system with auxiliary volume is derived, according to the theory of thermodynamic, hydrodynamics. The deformation-load static characteristic curves of air-spring is obtained, by using a numerical solution method. Then, the ADAMS model of the heavy truck's driver seat suspension system is built up, based on the structure of the seat and parameters of the air-spring and the shock-absorber. At last, the model is validated by comparing the simulation results and the test results, considering the seat acceleration PSD and RMS value.
Journal Article

A Polynomial Chaos-Based Method for Recursive Maximum Likelihood Parameter Estimation of Load Sensing Proportional Valve

2014-04-01
2014-01-0721
In this paper, a new computational method is provided to identify the uncertain parameters of Load Sensing Proportional Valve (LSPV) in a heavy truck brake system by using the polynomial chaos theory. The simulation model of LSPV is built in the software AMESim depending on structure of the valve, and the estimation process is implemented relying on the experimental measurements by pneumatic bench test. With the polynomial chaos expansion carried out by collocation method, the output observation function of the nonlinear pneumatic model can be transformed into a linear and time-invariant form, and the general recursive functions based on Newton method can therefore be reformulated to fit for the computer programming and calculation. To improve the estimation accuracy, the Newton method is modified with reference to Simulated Annealing algorithm by introducing the Metropolis Principle to control the fluctuation during the estimation process and escape from the local minima.
Technical Paper

Thermal Analysis of Functional Gradient Materials as Thermal Barrier Coating of Piston

2008-01-01
2008-01-2754
It was simulated the temperature and thermal stress distributions of ceramics/metal functional gradient piston coating based on the third type boundary conditions of piston in IC engine under stable working conditions using the indirect solution method of thermal analysis and subsequently structural analysis by means of ANSYS10.0 finite element software. It was studied the effect of gradient composition distribution index p on the temperature of piston head and the thermal stress at the gradient layers of ceramics/metal. The optimal design result, as the gradient composition distribution index p = 0.6, could be obtained to relax the thermal stress.
Technical Paper

Numerical Solution of Stochastic Differential Equations with Application to Vehicle Handling

2010-04-12
2010-01-0912
To solve the dynamic response problem that contains uncertain parameters needs, the stochastic differential equations needs to be calculated. Interval analysis has been widely used to solve engineering problems which contain many uncertain parameters usually. But the numerical solution method for stochastic differential equations based on the interval analysis method was seldom investigated. In this study a new numerical interval method for the stochastic differential equations based on the Euler's method is presented, which can be used to solve the linear system effectively and efficiently. The probabilistic and interval dynamics analysis of a two-degree-of-freedom bike car model with uncertain parameters are presented.
Technical Paper

Spray and Combustion Characteristics of HCCI Engine Using DME/Diesel Blended Fuel by Port-Injection

2010-05-05
2010-01-1485
Homogeneous charge compression ignition (HCCI) is a new combustion concept which achieves high efficiency, low nitrogen oxides (NOx), and particulates matter (PM) emissions. In order to realize the HCCI combustion, a homogenous mixture preparation plays an important role in the HCCI engine. However, it is well known that diesel fuel is very difficult to achieve a uniform mixture distribution within the engine cylinder because of its high viscosity and poor fuel vaporization. In order to eliminate these problems, the low viscosity and high volatility Dimethyl ether (DME) was added into diesel fuel to enhance the spray and atomization. The spray tip penetration and spray cone angle of DME/diesel-blended fuel has been examined by using direct photography technology. Measurements were achieved by using spray images taken with a high-resolution CCD camera synchronized with strobe light.
Technical Paper

Study on HCCI Combustion and Emission Characteristics of Diesel Engine Fueled with Methanol/DME

2010-04-12
2010-01-0578
Homogeneous charge compression ignition (HCCI) is considered as a clean and high effective combustion technology. Alternative fuel Dimethyl Ether(DME) has some problems in HCCI combustion mode, such as narrow stable conditions and higher unregulated emissions. In this research, a single cylinder diesel engine zs195 was applied to HCCI operation, methanol and DME were fueled to the engine by fuel injection system with an electric controlled port in dual fuel mode. Regulated DME and methanol proportions can significantly expand the stable HCCI operation and obtained over a broad speed and load region. The emission tests indicated that NOx and smoke emissions were overall very low under normal HCCI operation, while HC and CO emissions were much higher than conventional CI-engines. HC and CO emissions increased with methanol content but reduced with output power.
Technical Paper

Interval Analysis Method of a Powertrain Mounting System with Uncertain Parameters

2010-04-12
2010-01-0905
One of the most important vibration isolators in vehicles is the powertrain mounting system (PMS). It transmits the powertrain vibrations to the body, and the chassis vibrations excited by road to the powertrain. The design of a PMS is an essential part in vehicle safety and in improving the vehicle noise, vibration and harshness (NVH) performances. Many organizations are increasingly relying on design simulation rather than trail-and-error based experiments which are expensive and time-consuming for PMS evaluation. However, design parameters for PMS are always uncertain in actual cases due to tolerances in manufacturing and assembly processes. In this paper, based on a front wheel drive vehicle with a transversely four-cylinder engine, the uncertain characteristics of PMS are studied by interval analysis method.
Technical Paper

Detailed 3D-CFD/Chemistry of CNG-Hydrogen Blend in HCCI Engine

2010-04-12
2010-01-0165
The interaction of natural gas fuel manifold injection with the in-cylinder flow field, and the combustion behavior of an HCCI engine is numerically investigated by using numerous capabilities of multi-dimensional computational fluid dynamic (KIVA-3VR2) code coupled with detailed chemical kinetics. A validating oxidation reaction mechanism that mainly consisted from 314 elementary reactions among 52 species is employed to simulate the whole engine physicochemical process including the intake flow interaction with natural gas port fuel injection, the homogeneity of the gas fuel and the air during suction and compression strokes, autoignition and combustion process. The simulation problem of the gaseous fuel injection by using the original KIVA spray sub-model is solved by implementing a new modification into the original KIVA sub-routines to enable multiple inlet conditions through the use of regions.
Technical Paper

Development of Diesel Engines Fuelled with Natural Gas

2001-09-24
2001-01-3505
Natural gas engines have widely been developed in the world because of the decrease of oil resources and strictness of the exhaust regulations. This paper introduces the main processes of designing diesel engines fuelled with natural gas and ignited by spark plugs. Secondly, it analyzes a number of problems considered during the process of designing. As an example, authors introduce the characteristic of a natural gas engine converted from a 4125 diesel engine and discuss the performances of the prototype engine according to results of the engine bed testing The result is satisfying.
Technical Paper

Experimental Study on Diesel Spray Characteristics Using Different Ambient Gases

2016-04-05
2016-01-0867
The spray characteristics is the key to achieve the clean combustion in diesel engines and the in-cylinder conditions are one of the factors affecting the spray process. In this work, the diesel spray characteristics were studied over a range of injection pressures and ambient pressures in a constant volume chamber and a single-hole common rail diesel injector was used. The present work is to decouple the effects of ambient pressure and ambient density on near-field spray processes by using different ambient gas (N2, and CO2). The spray processes were captured by a Photron SA X2 camera with speed of 300,000 fps and resolution of 256 by 80 pixels. The spray processes were analyzed in terms of penetration length and spray tip velocity. Difference in penetration length and tip velocity were found at the same ambient density and/or ambient pressure when different ambient gases were used.
Technical Paper

Design Optimization of Crankshaft Bearing Based on Crankshaft-Bearing System

2016-04-05
2016-01-1388
In current design optimization of engine crankshaft bearing, only the crankshaft bearing is considered as the studying object. However, the corresponding relations of major structure dimensions exist between the crankshaft and the crankshaft bearing in engine, and there are the interaction effects between the crankshaft and the crankshaft bearing during the operation of engine. In this paper, the crankshaft-bearing system of a four-cylinder engine is considered as the studying object, the multi-objective design optimization of crankshaft bearing is developed. The crankshaft mass and the total frictional power loss of crankshaft bearings are selected as the objective functions in the design optimization of crankshaft bearing. The Particle Swarm Optimization algorithm is used in the optimization calculation. The optimization results are compared to the ones of original engine design and the single-objective design optimization of crankshaft bearing.
Technical Paper

Dynamic Characteristics Analysis of an Ambulance with Hydraulically Interconnected Suspension System

2018-04-03
2018-01-0815
The vibration and instability experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from emergency care. This paper presents a hydraulically interconnected suspension (HIS) system which can achieve enhanced cooperative control of roll, pitch and bounce motion modes to improve the ambulance's ride comfort and handling performance. A lumped-mass model integrated with a mechanical and hydraulic coupled system is developed by using free-body diagram and transfer matrix methods. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. A special modal analysis method is employed to reveal the vibration characteristics of the ambulance with the HIS.
Technical Paper

Sprung Mass Identification of Suspension in a Simplified Model

2014-04-01
2014-01-0051
This paper describes a simplified model to identify sprung mass using golden section method, the model treats the unsprung mass vertical acceleration as input and the sprung mass vertical acceleration as output, which can avoid the nonlinear influence of trye. Unsprung mass can be also calculated by axle load and the identified sprung mass. This study carries out road test on the vehicle ride comfort and takes a scheme that the group of 20 km/h is used to identify sprung mass and the group of 80 km/h is used to verify the identification result. The similarity of the results from the simulation and experiments performed are, for the sprung mass, 98.59%. A conclusion can be drawn that the simple method to measure the sprung mass in the suspension systems in used vehicles, such as the vehicle shown here, is useful, simple and has sufficient precision.
Technical Paper

A Polynomial Chaos- Based Likelihood Approach for Parameter Estimation of Load Sensing Proportional Valve

2013-04-08
2013-01-0948
As there are a variety of uncertainty contained in dynamic systems, this paper presents a method to identify the uncertain parameters of Load Sensing Proportional Valve in a heavy truck brake system. This method is derived from polynomial chaos theory and uses the maximum likelihood approach to estimate the most likely value of uncertain parameters, such as equivalent bearing area diameter of the diaphragm, preload of return spring and so on. The maximum likelihood estimates are obtained through minimizing the cost function derived from the prior probability for the measurement noise. Direct stochastic collocation has been shown to be more efficient than Galerkin approach in the simulation of systems with large number of uncertain parameters. The simulation model of Load Sensing Proportional Valve is built in software AMESim based on logic structure of the valve. The uncertain parameters are estimated through the simulation results which are treated as measurements.
Technical Paper

Research on the Lubrication Performance of Crankshaft Bearing under Different Engine Operating Conditions

2018-04-03
2018-01-0979
The actual engine (especially vehicle engine) does not always operate under rated operating condition and its operating condition changes constantly. However, only the lubrication performance of crankshaft bearing at rated engine operating condition has been generally analyzed in current design and research of engine crankshaft bearing. In this paper, a four-stroke four-cylinder engine is taken as the studying object, the load and lubrication of crankshaft bearing under different operating conditions are analyzed systematically and comprehensively. The load of connecting-rod bearing is calculated by the dynamic calculation method, the loads of all crankshaft main bearings are calculated by the whole crankshaft solid-element finite element method, and the lubrication performance of crankshaft bearings are analyzed by the dynamic method.
Technical Paper

Optimization of Braking Force Distribution for Three-Axle Truck

2013-04-08
2013-01-0414
To provide a greater weight capacity, the tandem axle which is a group of two or more axles situated close together has been used on most heavy truck. In general, the reaction moments during braking cause a change in load distribution among both axles of the tandem suspension. Since load transfer among axles of a tandem suspension can lead to premature wheel lockup, tandem-axle geometry and the brake force distribution among individual axles of a tandem suspension have a pronounced effect on braking efficiency. The braking efficiency has directly influence on the vehicle brake distance and vehicle travelling direction stability in any road condition, so how to improve the braking efficiency is researched in this paper. The load transfer among individual axles is not only determined by vehicle deceleration but also by the actual brake force of each axle for tandem axle suspension, which increases the difficulty of braking efficiency improving.
Technical Paper

Robust Design for Vehicle Ride Comfort and Handling with Multi-Objective Evolutionary Algorithm

2013-04-08
2013-01-0415
As is known to all, there are some contradictions between the handling and ride performance during the design process of vehicles. Sometimes owing to serious collisions of each criterion in the high-dimensional solution space, the common method to deal with the contradiction is to transform into a single target according to weights of each objective, which may not obtain a desired result. A multi-criteria approach is therefore adopted to optimize both properties and the result of a multi-criteria design is not a unique one but a series of balanced solutions. This paper is focused on the robust design of a simplified vehicle model in terms of not only ride comfort but also handling and stability using a multi-objective evolutionary algorithm (MOEA) method. Using the proposed method, the conflicting performance requirements can be better traded off. One of the most important indexes to characterize the vertical ride comfort is the acceleration of the sprung mass.
Technical Paper

Study on an Electronically Controlled Common-Rail Injection System for Liquefied Alternative Fuels

2005-05-11
2005-01-2085
Liquefied alternative fuels offer great potential benefits in reducing exhaust emissions and improving fuel economy of automotive engines. In order to achieve the best performance of the engine running with such fuels, it is critical to have an appropriate fuel system. In the present work, a new electronically controlled common-rail injection system has been specially designed and tested for the direct injection of liquefied alternative fuels, since a conventional pump-line-injector injection system in the conventional diesel engine was not suitable for the purpose. Experimental work has been carried out to examine and improve matching of the fuel injection system on a new fuel injection pump test bench. The preliminary engine bench test has demonstrated that this arrangement meets the requirement for the operating characteristics of a fuel injection system in a direct injection diesel engine operating with dimethyl ether (DME).
X