Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Continuously Regenerable Freeze-Out CO2 Control Technology

2007-07-09
2007-01-3270
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA's planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber for an ejector-based cryogenic PLSS was developed, designed, and tested. The scrubber freezes CO2 and other trace contaminants out of expired ventilation loop gas using cooling available from a liquid oxygen (LOX) based PLSS.
Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

Digital Learning Network Education Events for the Desert Research and Technology Studies

2007-07-09
2007-01-3063
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA's Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.
Technical Paper

Digital Learning Network Education Events of 2006 NASA's Extreme Environments Mission Operations

2007-07-09
2007-01-3064
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. The DLN has created a series of live education videoconferences connecting NASA's Extreme Environment Missions Operations (NEEMO) team to students across the United States. Programs are also extended to students around the world via live webcasting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO crewmembers, including NASA astronauts, engineers and scientists, inform and inspire students about the importance of exploration and share the importance of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration's underwater laboratory located 4.5 kilometers off Key Largo in the Florida Keys National Marine Sanctuary.
Technical Paper

Development Status of the Contaminant Insensitive Sublimator

2008-06-29
2008-01-2168
Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks to previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (∼3-µ6 μn) in the porous plates where ice forms and sublimates. The Contaminant Insensitive Sublimator (CIS) has been recently developed at NASA-JSC to be less sensitive to contaminants by using a larger pore size media (−350 um). Testing of a CIS Engineering Development Unit (EDU) has demonstrated good heat rejection performance. This paper describes testing that investigates different factors affecting efficient utilization of the feedwater.
Technical Paper

Ventilation Transport Trade Study for Future Space Suit Life Support Systems

2008-06-29
2008-01-2115
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Investigation of Transient Sublimator Performance

2009-07-12
2009-01-2480
Sublimators have been used for heat rejection in a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode during low lunar orbit for Altair and possibly Orion, which represents a new mode of operation. This paper will investigate the feedwater utilization when a sublimator is used in this nontraditional manner. This paper includes testing efforts to date to investigate the Orbit-Averaged Feedwater Utilization (OAFU) for a sublimator.
Technical Paper

Advanced Extravehicular Activity Education Outreach in Support of the Vision for Space Exploration

2005-07-11
2005-01-3100
The Vision for Space Exploration outlines NASA's goals to return to the Moon, and travel on to Mars. The exploration activities associated with these endeavors will include both space and surface extravehicular activities (EVAs). This paper describes the plans for education outreach activities and products related to the technological developments and challenges similar to those being addressed by the Advanced EVA (AEVA) team. Efforts to involve and coordinate educational research projects with the AEVA team will also be discussed. The proposed activities and products will provide hands-on, interactive exercises through workshops, presentations, and demonstrations to allow students of all levels to learn about and experience the design challenges similar to what NASA deals with everyday in developing EVA systems.
Technical Paper

Advanced Integration Matrix Education Outreach

2004-07-19
2004-01-2481
The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students' everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution.
Journal Article

Design of a Sublimator Driven Coldplate Development Unit

2008-06-29
2008-01-2169
The Sublimator Driven Coldplate is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement. This paper describes the design of an engineering development unit intended to demonstrate the feasibility of the Sublimator Driven Coldplate concept.
X