Refine Your Search

Topic

Search Results

Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Development of an Automatic Climate Control(ACC) Algorithm and the Roof Mounted System for Busses

1998-11-16
982777
Air conditioning is defined as the process of treating air so as to control simultaneously its temperature, humidity, cleanliness and distribution to meet the requirements of the conditioned space. As in the definition, the important actions involved in the operation of an air conditioning system are temperature and humidity control, air purification and movement. For these conditions this paper proposes a Automatic Climate Control(ACC) system of the bus. The system has cooling, heating, and dehumidifying modes, and is governed by dual 8-bit microprocessors. These modes are broken down into sub-modules dealing with control of the compressor, blower speed, damper position, air purifier, ventilators, preheater, air mixing damper and so on.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

A Study on the Vehicle Durability Analysis in Braking Mode

2010-04-12
2010-01-0492
The verification of the durability for vehicle body and chassis components is a basic requirement for the vehicle development process. For this, automotive company performs durability test on the proving ground or predict the durability using CAE technology. The representative proving ground test that verifies the durability of vehicle body and chassis components are belgian(hereinafter B/G) and cross-country(hereinafter X/C) test road. The B/G test road verifies the durability of body and chassis components for periodic road load that the vehicle undergoes while travelling on a rough road with regular speed. The X/C test road is composed of squat, dive, bumping and bottoming test modes and this test verifies the durability under aperiodic road load. Because of the relatively long test load of X/C, the road load signal of X/C is too long and enormous to apply it to durability analysis.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Aeroacoustics Predictions of Automotive HVAC Systems

2010-04-12
2010-01-0415
Acoustics comfort is a key point for the ground transportation market and in particular in the automotive area. A significant contributor to the noise levels in the cabin in the range 200Hz to 3000Hz is the HVAC (Heating, Ventilating, and Air Conditioning) system, consisting of sub-systems such as the air intake duct, thermal mixing unit, blower, ducts, and outlet vents. The noise produced by an HVAC system is mainly due to aeroacoustics mechanisms related to the flow fluctuations induced by the blower rotation. The structure borne noise related to the surface induced vibrations and to the noise transmission through the dash or plastic panels may also contribute but is not considered in this study. This study presents a digital approach for HVAC aeroacoustics noise predictions related to the ducts and outlet vents. In order to validate the numerical method flow and acoustics measurements are performed on production HVAC systems placed in an anechoic room.
Technical Paper

Invisible Advanced Passenger-Side Airbag Door Design for Optimal Deployment and Head Impact Performance

2004-03-08
2004-01-0850
Hard panel types of invisible passenger-side airbag (IPAB) door system must be designed with a weakened area such that the airbag will deploy through the Instrument Panel (IP) in the intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test (ECE 21.01). If the advanced-airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of IPAB door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. We introduced the ‘Operating Window’ idea from quality engineering to design the hard panel types of IPAB door applied to the advanced-airbag for optimal deployment and head impact performance. To accurately predict impact performance, it is important to characterize the strain rate.
Technical Paper

Automatic Climate Control of the Recreation Vehicle with Dual HVAC System

2001-03-05
2001-01-0591
In this paper, we deal with the automatic climate control for Recreational Vehicle (RV). The HVAC system used for RV was composed of front side and rear side. And, the HVAC system of front side differed from that of rear side in the characteristic of HVAC system. This system was economically optimized for automatic control over 2 separated zones. The development procedure of automatic climate controller was as follows. The first stage was to derive control equation from characteristic analysis of HVAC system and the structural characteristic of vehicle interior. In the second stage, the software (S/W) was designed and programmed to operate microprocessor which calculated previously mentioned equation. Finally, the hardware (H/W) design and building were performed to operate the HVAC system with the calculation results from microprocessor. The control performance of this automatic climate control algorithm and system was evaluated by experimental method.
Technical Paper

Scavenger free three-way catalyst with low hydrogen sulfide emission

2000-06-12
2000-05-0308
This study suggests new types of catalysts that show low hydrogen sulfide emission without scavenger such as NiO. Hydrogen sulfide can be reduced by changing the physicochemical properties of washcoat components. Synthesized gas activity tests were performed to investigate the effect of modified washcoat on hydrogen sulfide formation and catalytic activity. BET surface area tests, X- ray diffraction tests, and gas chromatography tests were also carried out to examine the characteristics of catalysts. Preparation methods for catalysts were focused on minimizing the adsorption of sulfur species on catalysts. The first approach is heat treatment of cerium oxide to reduce adsorption sites for sulfur compounds. But this leads to deterioration of CO and NOx conversion efficiencies. The second one is adding new types of promoters that increase thermal durability and dynamic oxygen storing function of cerium oxide.
Technical Paper

Analysis of an Automotive Ground System Based on a Ground Model and Current Distribution in it

2004-03-08
2004-01-1598
Ground systems in automobiles become more important as more electric devices are installed and the amount of currents flowing increases. The performance of the devices depends on the ground voltage, which is generated between ground points by I-R voltage drops. Therefore, low ground voltages are required for the reduction of the unnecessary power dissipation as well as the reliable performance of the devices. In this paper, we propose an automotive ground system model to analyze ground structure and reveal the main cause of ground voltages. The equivalent resistor network model is presented to describe the relationship between ground points. Then, we validate the model by comparing the simulation results with the measurements in a real car. The presented analysis can provide guidance on designing a reliable ground system such as how to reduce the ground voltages for the proper operation of devices.
Technical Paper

Semi-Active Steering Wheel for Steer-By-Wire System

2001-10-01
2001-01-3306
Conventional steering system has a mechanical connection between the driver and the front tires of the vehicle, but in steer-by-wire system, there is no such a connection. Instead, actuators, positioned in the vehicle's front corners receive input from the control module and turn the front wheels accordingly. In steer-by-wire system, steering wheel is an important part that not only transfers driver's steering input to the controller but also provides a road feedback feeling to the driver's hand. Thus the reactive torque actuator, providing road feedback, plays an important role in steer-by-wire system. In conventional steer-by-wire-system, a motor was used as a reactive torque actuator. But using motor has some disadvantages such as an oscillatory feeling, and improper and potentially dangerous acceleration of the steering wheel by the motor when driver's hands are released from steering wheel abruptly.
Technical Paper

Hyundai Santa Fe FCV Powered by Hydrogen Fuel Cell Power Plant Operating Near Ambient Pressure

2002-03-04
2002-01-0093
Hyundai Motor Company has developed hydrogen fuel cell vehicles (FCV) based on its SUV, Santa Fe. As the hydrogen fuel cell power plant runs at near ambient pressure, parasitic loss due to its operation is fully minimized and the noise level of the air supply subsystem is extremely low. The Santa Fe FCV has been built to feature roomy passenger space and cargo capacity identical to that of a standard, gasoline-powered Santa Fe, because of its compact fuel cell power plant. In addition, lightweight aluminum body-components help to keep a power-to-weight ratio similar to that of a conventional SUV. Hyundai Motor Company, as a full member of California Fuel Cell Partnership, is now operating the Santa Fe FCV's on real roads in California. In this paper, the configuration and performance test results of the Santa Fe FCV will be described.
Technical Paper

The Effects of Various Design Factors for Invisible Passenger-side Airbag Door Opening

2002-03-04
2002-01-0184
Invisible Passenger-side Airbag (IPAB) door systems must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. A predictive Finite Element Analysis (FEA) was carried out to calculate the effects of varying design factors (the length and thickness of kink-hinge, tear-line type and temperature) on the IPAB-door opening. The impact performance of plastic parts was considered, because the mechanical properties of thermoplastic materials are strongly dependent on strain rate.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

Development of Cast-Forged Knuckle using High Strength Aluminum Alloy

2011-04-12
2011-01-0537
Aluminum steering knuckles are widely employed for weight reduction and improvement of ride & handling performance. In this study, a high strength aluminum alloy for cast-forged knuckle was designed to achieve higher mechanical properties than those of the conventional foundry alloy. Using this alloy, high strength knuckles were manufactured and performed test of mechanical properties, suspension module strength and durability. The strength and the elongation of the developed knuckle were increased by 20% and 40%, respectively, as compared with the conventional alloy. Also this knuckle passed the static strength and durability test of the front suspension module.
Technical Paper

A Development of Urea Solution Injection Quantity Decision Logic for SCR System

2013-04-08
2013-01-1069
In this project, phenomena in a SCR catalyst, such as heat transfer and catalytic reactions, are modeled numerically. The model is simplified to be integrated on an electronic control unit. The calibration process for this model has been developed, which is performed on gas bench and validated on a vehicle equipped with a Urea-SCR system and a Rapid Prototype Control Unit. With this simplified SCR reaction model, it is possible to estimate NH3 consumption and properly control the urea injection quantity with less calibration efforts.
X